{-# OPTIONS --without-K --safe #-}
open import Axiom.Extensionality.Propositional
module Mints.Soundness.Properties.LogRel (fext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) where
open import Lib
open import Data.Nat
open import Data.Nat.Properties as ℕₚ
open import Mints.Statics.Properties
open import Mints.Semantics.Readback
open import Mints.Semantics.Properties.Domain fext
open import Mints.Semantics.Properties.PER fext
open import Mints.Soundness.LogRel
open import Mints.Soundness.Properties.NoFunExt.LogRel public
®Nat-mon : Γ ⊢ t ∶N® a ∈Nat → Δ ⊢r σ ∶ Γ → Δ ⊢ t [ σ ] ∶N® a [ mt σ ] ∈Nat
®Nat-mon (ze t≈) ⊢σ = ze (≈-trans ([]-cong-N′ t≈ (⊢r⇒⊢s ⊢σ)) (ze-[] (⊢r⇒⊢s ⊢σ)))
®Nat-mon (su t≈ t∼a) ⊢σ = su (≈-trans ([]-cong-N′ t≈ ⊢σ′) (su-[] ⊢σ′ (®Nat⇒∶Nat t∼a (proj₂ (presup-s ⊢σ′))))) (®Nat-mon t∼a ⊢σ)
where ⊢σ′ = ⊢r⇒⊢s ⊢σ
®Nat-mon {_} {t} {_} {Δ} {σ} (ne {c} c∈ rel) ⊢σ = ne (Bot-mon (mt σ) c∈) helper
where helper : Δ′ ⊢r τ ∶ Δ → Δ′ ⊢ t [ σ ] [ τ ] ≈ Ne⇒Exp (proj₁ (Bot-mon (mt σ) c∈ (map len Δ′) (mt τ))) ∶ N
helper {Δ′} {τ} ⊢τ
with c∈ (map L.length Δ′) (mt σ ø mt τ) | Bot-mon (mt σ) c∈ (map len Δ′) (mt τ) | rel (⊢r-∘ ⊢σ ⊢τ)
... | u , ↘u , _ | u′ , ↘u′ , _ | tστ≈
rewrite Dn-comp c (mt σ) (mt τ)
| Re-det ↘u ↘u′ = ≈-trans ([∘]-N (®Nat⇒∶Nat (ne c∈ rel) (proj₂ (presup-s (⊢r⇒⊢s ⊢σ)))) (⊢r⇒⊢s ⊢σ) (⊢r⇒⊢s ⊢τ)) tστ≈
Glu-wellfounded-≡′ : ∀ {i i′ j} (j<i : j < i) (j<i′ : j < i′) → (λ {A B} → Glu-wellfounded i j<i {A} {B}) ≡ Glu-wellfounded i′ j<i′
Glu-wellfounded-≡′ (s≤s j<i) (s≤s j′<i) = cong (Glu._⊢_®_ _) (implicit-extensionality fext
λ {j′} → fext λ j′<j → Glu-wellfounded-≡′ (≤-trans j′<j j<i) (≤-trans j′<j j′<i))
Glu-wellfounded-≡ : ∀ {i j} (j<i : j < i) → (λ {A B} → Glu-wellfounded i j<i {A} {B}) ≡ _⊢_®[ j ]_
Glu-wellfounded-≡ (s≤s j<i) = cong (Glu._⊢_®_ _) (implicit-extensionality fext λ {j′} → fext (λ j′<j → Glu-wellfounded-≡′ (≤-trans j′<j j<i) j′<j))
®El⇒tm : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Γ ⊢ t ∶ T
®El⇒tm (ne C≈C′) (ne _ , glu) = GluNe.t∶T glu
®El⇒tm N (t∼a , T≈N) = conv (®Nat⇒∶Nat t∼a (proj₁ (presup-≈ T≈N))) (≈-sym T≈N)
®El⇒tm (U j<i eq) t∼a = GluU.t∶T t∼a
®El⇒tm (□ A≈B) t∼a = Glubox.t∶T t∼a
®El⇒tm (Π iA RT) t∼a = GluΛ.t∶T t∼a
®El⇒∈El : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
a ∈′ El i A≈B
®El⇒∈El (ne C≈C′) (a∈⊥ , _) = a∈⊥
®El⇒∈El N (t∼a , _) = ®Nat⇒∈Nat t∼a
®El⇒∈El (U j<i eq) t∼a
rewrite 𝕌-wellfounded-≡-𝕌 _ j<i = GluU.A∈𝕌 t∼a
®El⇒∈El (□ A≈B) t∼a = Glubox.a∈El t∼a
®El⇒∈El (Π iA RT) t∼a = GluΛ.a∈El t∼a
®El⇒® : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Γ ⊢ T ®[ i ] A≈B
®El⇒® (ne C≈C′) (ne c∈ , glu) = ⊢T , λ ⊢σ → proj₁ (krip ⊢σ)
where open GluNe glu
®El⇒® N (_ , T≈N) = T≈N
®El⇒® (U j<i eq) t∼a = GluU.T≈ t∼a
®El⇒® (□ A≈B) t∼a = record
{ GT = GT
; T≈ = T≈
; krip = λ {_} {σ} Ψs ⊢ΨsΔ ⊢σ →
let open □Krip (krip Ψs ⊢ΨsΔ ⊢σ)
in ®El⇒® (A≈B (ins (mt σ) (len Ψs))) rel
}
where open Glubox t∼a
®El⇒® (Π iA RT) t∼a = record
{ IT = IT
; OT = OT
; ⊢OT = ⊢OT
; T≈ = T≈
; krip = λ {_} {σ} ⊢σ →
let open ΛRel (krip ⊢σ)
in record
{ IT-rel = IT-rel
; OT-rel = λ s∼a a∈ →
let open ΛKripke (ap-rel s∼a a∈)
in ®El⇒® (ΠRT.T≈T′ (RT (mt σ) a∈)) ®fa
}
}
where open GluΛ t∼a
®El⇒ty : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Γ ⊢ T ∶ Se i
®El⇒ty A≈B t∼a = ®⇒ty A≈B (®El⇒® A≈B t∼a)
®El-resp-≈ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Γ ⊢ t ≈ t′ ∶ T →
Γ ⊢ t′ ∶ T ®[ i ] a ∈El A≈B
®El-resp-≈ (ne C≈C′) (ne c∈ , glu) t≈t′ = ne c∈ , record
{ t∶T = proj₁ (proj₂ (proj₂ (presup-≈ t≈t′)))
; ⊢T = ⊢T
; krip = λ ⊢σ → proj₁ (krip ⊢σ) , ≈-trans ([]-cong (≈-sym t≈t′) (s-≈-refl (⊢r⇒⊢s ⊢σ))) (proj₂ (krip ⊢σ))
}
where open GluNe glu
®El-resp-≈ N (t∼a , T≈N) t≈t′ = ®Nat-resp-≈ t∼a (≈-conv t≈t′ T≈N) , T≈N
®El-resp-≈ (U j<i eq) t∼a t≈t′
rewrite Glu-wellfounded-≡ j<i = record
{ t∶T = proj₁ (proj₂ (proj₂ (presup-≈ t≈t′)))
; T≈ = T≈
; A∈𝕌 = A∈𝕌
; rel = ®-resp-≈ A∈𝕌 rel (≈-conv t≈t′ T≈)
}
where open GluU t∼a
®El-resp-≈ {_} {_} {Γ} (□ A≈B) t∼a t≈t′ = record
{ GT = GT
; t∶T = proj₁ (proj₂ (proj₂ (presup-≈ t≈t′)))
; a∈El = a∈El
; T≈ = T≈
; krip = λ {Δ} {σ} Ψs ⊢ΨsΔ ⊢σ →
let open □Krip (krip Ψs ⊢ΨsΔ ⊢σ)
⊢σ′ = ⊢r⇒⊢s ⊢σ
⊢ΨsΔ = proj₁ (presup-tm (®El⇒tm (A≈B (ins (mt σ) (len Ψs))) rel))
⊢Δ = ⊢⇒∥⊢ Ψs ⊢ΨsΔ
⊢IΨs = s-; Ψs (s-I ⊢Δ) ⊢ΨsΔ refl
⊢□GT = proj₁ (proj₂ (proj₂ (presup-≈ T≈)))
_ , ⊢GT = inv-□-wf ⊢□GT
in record
{ ua = ua
; ↘ua = ↘ua
; rel = ®El-resp-≈ (A≈B (ins (mt σ) (len Ψs))) rel
(≈-conv (unbox-cong Ψs (≈-conv ([]-cong t≈t′ (s-≈-refl ⊢σ′)) (≈-trans ([]-cong-Se′ (lift-⊢≈-Se-max T≈) ⊢σ′) (□-[] ⊢σ′ (lift-⊢-Se-max′ ⊢GT))))
⊢ΨsΔ refl)
(≈-trans ([∘]-Se ⊢GT (s-; L.[ [] ] ⊢σ′ (⊢κ ⊢Δ) refl) ⊢IΨs)
([]-cong-Se″ ⊢GT (s-≈-trans (;-∘ L.[ [] ] ⊢σ′ ⊢IΨs refl)
(subst (λ n → Ψs ++⁺ Δ ⊢s (σ ∘ I) ; n ≈ σ ; len Ψs ∶ [] ∷⁺ Γ)
(sym (+-identityʳ _))
(;-cong Ψs (∘-I ⊢σ′) ⊢ΨsΔ refl))))))
}
}
where open Glubox t∼a
®El-resp-≈ {i = i} (Π iA RT) t∼a t≈t′ = record
{ t∶T = proj₁ (proj₂ (proj₂ (presup-≈ t≈t′)))
; a∈El = a∈El
; IT = IT
; OT = OT
; ⊢OT = ⊢OT
; T≈ = T≈
; krip = λ {Δ} {σ} ⊢σ →
let open ΛRel (krip ⊢σ)
in record
{ IT-rel = IT-rel
; ap-rel = λ s∼b b∈ →
let open ΛKripke (ap-rel s∼b b∈)
⊢σ′ = ⊢r⇒⊢s ⊢σ
⊢s = ®El⇒tm _ s∼b
⊢Π = proj₁ (proj₂ (proj₂ (presup-≈ T≈)))
j , ⊢IT = inv-Π-wf′ ⊢Π
k , ⊢OT = inv-Π-wf ⊢Π
in record
{ fa = fa
; ↘fa = ↘fa
; ®fa = ®El-resp-≈ (ΠRT.T≈T′ (RT (mt σ) b∈)) ®fa
(≈-conv ($-cong (≈-conv ([]-cong t≈t′ (s-≈-refl ⊢σ′))
(≈-trans ([]-cong-Se′ (lift-⊢≈-Se-max T≈) ⊢σ′)
(lift-⊢≈-Se-max′ {i = j ⊔ k} {i} (Π-[] ⊢σ′ (lift-⊢-Se-max ⊢IT) (lift-⊢-Se-max′ ⊢OT)))))
(≈-refl ⊢s))
(≈-trans ([∘]-Se ⊢OT (⊢q ⊢σ′ ⊢IT) (⊢I,t ⊢s))
([]-cong-Se″ ⊢OT (qI,≈, ⊢σ′ ⊢IT ⊢s))))
}
}
}
where open GluΛ t∼a
®El-resp-⊢≈ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
⊢ Γ ≈ Δ →
Δ ⊢ t ∶ T ®[ i ] a ∈El A≈B
®El-resp-⊢≈ (ne C≈C′) (ne c∈⊥ , rel) Γ≈Δ = ne c∈⊥ , record
{ t∶T = ctxeq-tm Γ≈Δ t∶T
; ⊢T = ctxeq-tm Γ≈Δ ⊢T
; krip = λ ⊢σ → krip (⊢r-resp-⊢≈ʳ ⊢σ (⊢≈-sym Γ≈Δ))
}
where open GluNe rel
®El-resp-⊢≈ N (t∼a , T≈N) Γ≈Δ = ®Nat-resp-⊢≈ t∼a Γ≈Δ , ctxeq-≈ Γ≈Δ T≈N
®El-resp-⊢≈ (U j<i eq) t∼a Γ≈Δ
rewrite Glu-wellfounded-≡ j<i = record
{ t∶T = ctxeq-tm Γ≈Δ t∶T
; T≈ = ctxeq-≈ Γ≈Δ T≈
; A∈𝕌 = A∈𝕌
; rel = ®-resp-⊢≈ A∈𝕌 rel Γ≈Δ
}
where open GluU t∼a
®El-resp-⊢≈ (□ A≈B) t∼a Γ≈Δ = record
{ GT = GT
; t∶T = ctxeq-tm Γ≈Δ t∶T
; a∈El = a∈El
; T≈ = ctxeq-≈ Γ≈Δ T≈
; krip = λ Ψs ⊢ΨsΔ ⊢σ → krip Ψs ⊢ΨsΔ (⊢r-resp-⊢≈ʳ ⊢σ (⊢≈-sym Γ≈Δ))
}
where open Glubox t∼a
®El-resp-⊢≈ (Π iA RT) t∼a Γ≈Δ = record
{ t∶T = ctxeq-tm Γ≈Δ t∶T
; a∈El = a∈El
; IT = IT
; OT = OT
; ⊢OT = ctxeq-tm (∺-cong Γ≈Δ (≈-refl (®Π-wf iA RT (®El⇒® (Π iA RT) t∼a)))) ⊢OT
; T≈ = ctxeq-≈ Γ≈Δ T≈
; krip = λ ⊢σ → krip (⊢r-resp-⊢≈ʳ ⊢σ (⊢≈-sym Γ≈Δ))
}
where open GluΛ t∼a
mutual
®-swap : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i)
(B≈A : B ≈ A ∈ 𝕌 i) →
Γ ⊢ T ®[ i ] A≈B →
Γ ⊢ T ®[ i ] B≈A
®-swap {_} {_} {Γ} {T} (ne C≈C′) (ne C′≈C) (⊢T , rel) = ⊢T , helper
where
helper : Δ ⊢r σ ∶ Γ →
Δ ⊢ T [ σ ] ≈ Ne⇒Exp (proj₁ (C′≈C (map len Δ) (mt σ))) ∶ Se _
helper {Δ} {σ} ⊢σ
with C≈C′ (map len Δ) (mt σ) | C′≈C (map len Δ) (mt σ) | rel ⊢σ
... | _ , ↘u , _ | _ , _ , ↘u₁ | Tσ≈
rewrite Re-det ↘u ↘u₁ = Tσ≈
®-swap N N T∼A = T∼A
®-swap (U _ refl) (U _ _) T∼A = T∼A
®-swap (□ A≈B) (□ B≈A) T∼A = record
{ Glu□ T∼A
; krip = λ {_} {σ} Ψs ⊢ΨsΔ ⊢σ →
®-swap (A≈B (ins (mt σ) (len Ψs))) (B≈A (ins (mt σ) (len Ψs))) (krip Ψs ⊢ΨsΔ ⊢σ)
}
where
open Glu□ T∼A
®-swap {_} {_} {Γ} (Π iA RT) (Π iA′ RT′) T∼A = record
{ GluΠ T∼A
; krip = krip′
}
where
open GluΠ T∼A
krip′ : ∀ {Δ σ} →
Δ ⊢r σ ∶ Γ →
ΠRel _ Δ IT OT σ iA′
(λ σ₁ → _⊢_®[ _ ] iA′ (mt σ₁))
(λ σ₁ a∈ → _⊢_®[ _ ] ΠRT.T≈T′ (RT′ (mt σ₁) a∈))
(λ σ₁ → _⊢_∶_®[ _ ]_∈El iA′ (mt σ₁))
krip′ {Δ} {σ} ⊢σ = record
{ IT-rel = ®-swap (iA (mt σ)) (iA′ (mt σ)) IT-rel
; OT-rel = OT-rel′
}
where
open ΠRel (krip ⊢σ)
OT-rel′ : ∀ {s b} →
Δ ⊢ s ∶ IT [ σ ] ®[ _ ] b ∈El iA′ (mt σ) →
(b∈ : b ∈′ El _ (iA′ (mt σ))) →
Δ ⊢ OT [ σ , s ] ®[ _ ] ΠRT.T≈T′ (RT′ (mt σ) b∈)
OT-rel′ s∼b b∈
with El-sym (iA′ (mt σ)) (iA (mt σ)) b∈
... | b∈′
with RT (mt σ) b∈′ | RT′ (mt σ) b∈ | OT-rel (®El-swap (iA′ (mt σ)) (iA (mt σ)) s∼b) b∈′
... | record { ↘⟦T⟧ = ↘⟦T⟧ ; ↘⟦T′⟧ = ↘⟦T′⟧ ; T≈T′ = T≈T′ }
| record { ↘⟦T⟧ = ↘⟦T′⟧₁ ; ↘⟦T′⟧ = ↘⟦T⟧₁ ; T≈T′ = T′≈T }
| R
rewrite ⟦⟧-det ↘⟦T⟧ ↘⟦T⟧₁
| ⟦⟧-det ↘⟦T′⟧ ↘⟦T′⟧₁ = ®-swap T≈T′ T′≈T R
®El-swap : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i)
(B≈A : B ≈ A ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Γ ⊢ t ∶ T ®[ i ] a ∈El B≈A
®El-swap {_} {_} {Γ} {t} {T} (ne C≈C′) (ne C′≈C) (ne c∈ , glu) = ne c∈
, record
{ GluNe glu
; krip = krip′
}
where
open GluNe glu
krip′ : Δ ⊢r σ ∶ Γ →
Δ ⊢ T [ σ ] ≈ Ne⇒Exp (proj₁ (C′≈C (map len Δ) (mt σ))) ∶ Se _
× Δ ⊢ t [ σ ] ≈ Ne⇒Exp (proj₁ (c∈ (map len Δ) (mt σ))) ∶ T [ σ ]
krip′ {Δ} {σ} ⊢σ
with C≈C′ (map len Δ) (mt σ) | C′≈C (map len Δ) (mt σ) | krip ⊢σ
... | _ , ↘u , _ | _ , _ , ↘u₁ | Tσ≈ , tσ≈
rewrite Re-det ↘u ↘u₁ = Tσ≈ , tσ≈
®El-swap N N t∼a = t∼a
®El-swap (U j<i refl) (U j<i₁ _) t∼a = record
{ GluU (t∼a)
; rel = subst (\f -> f _ _ A∈𝕌) (Glu-wellfounded-≡′ j<i j<i₁) rel
}
where
open GluU (t∼a)
®El-swap (□ A≈B) (□ B≈A) t∼a = record
{ Glubox t∼a
; a∈El = El-sym (□ A≈B) (□ B≈A) a∈El
; krip = λ {_} {σ} Ψs ⊢ΨsΔ ⊢σ →
let open module □krip = □Krip (krip Ψs ⊢ΨsΔ ⊢σ) in
record
{ □krip
; rel = ®El-swap (A≈B (ins (mt σ) (len Ψs))) (B≈A (ins (mt σ) (len Ψs))) rel
}
}
where
open Glubox t∼a
®El-swap {_} {_} {Γ} {t} {_} {a} (Π iA RT) (Π iA′ RT′) t∼a = record
{ GluΛ t∼a
; a∈El = El-sym (Π iA RT) (Π iA′ RT′) a∈El
; krip = krip′
}
where
open GluΛ t∼a
krip′ : ∀ {Δ σ} →
Δ ⊢r σ ∶ Γ →
ΛRel _ Δ t IT OT σ a iA′
(λ σ₁ → _⊢_®[ _ ] iA′ (mt σ₁))
(λ σ₁ → _⊢_∶_®[ _ ]_∈El iA′ (mt σ₁))
(λ σ₁ b∈ → _⊢_∶_®[ _ ]_∈El ΠRT.T≈T′ (RT′ (mt σ₁) b∈))
krip′ {Δ} {σ} ⊢σ = record
{ IT-rel = ®-swap (iA (mt σ)) (iA′ (mt σ)) IT-rel
; ap-rel = ap-rel′
}
where
open ΛRel (krip ⊢σ)
ap-rel′ : ∀ {s b} →
Δ ⊢ s ∶ IT [ σ ] ®[ _ ] b ∈El iA′ (mt σ) →
(b∈ : b ∈′ El _ (iA′ (mt σ))) →
ΛKripke Δ (t [ σ ] $ s) (OT [ σ , s ]) (a [ mt σ ]) b (_⊢_∶_®[ _ ]_∈El ΠRT.T≈T′ (RT′ (mt σ) b∈))
ap-rel′ s∼b b∈
with El-sym (iA′ (mt σ)) (iA (mt σ)) b∈
... | b∈′
with RT (mt σ) b∈′ | RT′ (mt σ) b∈ | ap-rel (®El-swap (iA′ (mt σ)) (iA (mt σ)) s∼b) b∈′
... | record { ↘⟦T⟧ = ↘⟦T⟧ ; ↘⟦T′⟧ = ↘⟦T′⟧ ; T≈T′ = T≈T′ }
| record { ↘⟦T⟧ = ↘⟦T′⟧₁ ; ↘⟦T′⟧ = ↘⟦T⟧₁ ; T≈T′ = T′≈T }
| R
rewrite ⟦⟧-det ↘⟦T⟧ ↘⟦T⟧₁
| ⟦⟧-det ↘⟦T′⟧ ↘⟦T′⟧₁ = record
{ Λkrip
; ®fa = ®El-swap T≈T′ T′≈T ®fa
}
where
open module Λkrip = ΛKripke R
mutual
®-one-sided : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i)
(A≈B′ : A ≈ B′ ∈ 𝕌 i) →
Γ ⊢ T ®[ i ] A≈B →
Γ ⊢ T ®[ i ] A≈B′
®-one-sided {Γ = Γ} {T} {i} (ne C≈C′) (ne C≈C″) (⊢T , rel) = ⊢T , helper
where helper : Δ ⊢r σ ∶ Γ → Δ ⊢ T [ σ ] ≈ Ne⇒Exp (proj₁ (C≈C″ (map len Δ) (mt σ))) ∶ Se i
helper {Δ} {σ} ⊢σ
with C≈C′ (map len Δ) (mt σ) | C≈C″ (map len Δ) (mt σ) | rel ⊢σ
... | u , ↘u , _ | u′ , ↘u′ , _ | Tσ≈
rewrite Re-det ↘u ↘u′ = Tσ≈
®-one-sided N N T∼A = T∼A
®-one-sided (U j<i eq) (U j′<i eq′) T∼A = T∼A
®-one-sided (□ A≈B) (□ A≈B′) T∼A = record
{ GT = GT
; T≈ = T≈
; krip = λ {_} {σ} Ψs ⊢ΨsΔ ⊢σ → ®-one-sided (A≈B (ins (mt σ) (len Ψs))) (A≈B′ (ins (mt σ) (len Ψs))) (krip Ψs ⊢ΨsΔ ⊢σ)
}
where open Glu□ T∼A
®-one-sided {Γ = Γ} {_} {i} (Π iA RT) (Π iA′ RT′) T∼A = record
{ IT = IT
; OT = OT
; ⊢OT = ⊢OT
; T≈ = T≈
; krip = λ {_} {σ} ⊢σ →
let open ΠRel (krip ⊢σ)
in record
{ IT-rel = ®-one-sided (iA (mt σ)) (iA′ (mt σ)) IT-rel
; OT-rel = helper ⊢σ
}
}
where open GluΠ T∼A
helper : Δ ⊢r σ ∶ Γ → Δ ⊢ s ∶ IT [ σ ] ®[ i ] a ∈El iA′ (mt σ) → (a∈ : a ∈′ El i (iA′ (mt σ))) → Δ ⊢ OT [ σ , s ] ®[ i ] (ΠRT.T≈T′ (RT′ (mt σ) a∈))
helper {Δ} {σ} ⊢σ s∼a a∈
with krip ⊢σ | El-one-sided (iA′ (mt σ)) (iA (mt σ)) a∈
... | record { OT-rel = OT-rel } | a∈′
with RT (mt σ) a∈′ | RT′ (mt σ) a∈ | OT-rel (®El-one-sided (iA′ (mt σ)) (iA (mt σ)) s∼a) a∈′
... | record { ⟦T⟧ = ⟦T⟧ ; ↘⟦T⟧ = ↘⟦T⟧ ; T≈T′ = T≈T′ }
| record { ↘⟦T⟧ = ↘⟦T⟧′ ; T≈T′ = T≈T′₁ }
| OT∼
rewrite ⟦⟧-det ↘⟦T⟧′ ↘⟦T⟧ = ®-one-sided T≈T′ T≈T′₁ OT∼
®El-one-sided : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i)
(A≈B′ : A ≈ B′ ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B′
®El-one-sided {Γ = Γ} {t} {T} {_} {i} (ne C≈C′) (ne C≈C″) (ne c∈ , glu) = ne c∈ , record
{ t∶T = t∶T
; ⊢T = ⊢T
; krip = helper
}
where open GluNe glu
helper : Δ ⊢r σ ∶ Γ → Δ ⊢ T [ σ ] ≈ Ne⇒Exp (proj₁ (C≈C″ (map len Δ) (mt σ))) ∶ Se i × Δ ⊢ t [ σ ] ≈ Ne⇒Exp (proj₁ (c∈ (map len Δ) (mt σ))) ∶ T [ σ ]
helper {Δ} {σ} ⊢σ
with C≈C′ (map len Δ) (mt σ) | C≈C″ (map len Δ) (mt σ) | krip ⊢σ
... | u , ↘u , _ | u′ , ↘u′ , _ | Tσ≈ , tσ≈
rewrite Re-det ↘u ↘u′ = Tσ≈ , tσ≈
®El-one-sided N N t∼a = t∼a
®El-one-sided (U j<i eq) (U j′<i eq′) t∼a
rewrite Glu-wellfounded-≡ j<i
| Glu-wellfounded-≡ j′<i = record
{ t∶T = t∶T
; T≈ = T≈
; A∈𝕌 = A∈𝕌
; rel = rel
}
where open GluU t∼a
®El-one-sided (□ A≈B) (□ A≈B′) t∼a = record
{ GT = GT
; t∶T = t∶T
; a∈El = El-one-sided (□ A≈B) (□ A≈B′) a∈El
; T≈ = T≈
; krip = λ {_} {σ} Ψs ⊢ΨsΔ ⊢σ →
let open □Krip (krip Ψs ⊢ΨsΔ ⊢σ)
in record
{ ua = ua
; ↘ua = ↘ua
; rel = ®El-one-sided (A≈B (ins (mt σ) (len Ψs))) (A≈B′ (ins (mt σ) (len Ψs))) rel
}
}
where open Glubox t∼a
®El-one-sided {Γ = Γ} {t} {_} {f} {i} (Π iA RT) (Π iA′ RT′) t∼a = record
{ t∶T = t∶T
; a∈El = El-one-sided (Π iA RT) (Π iA′ RT′) a∈El
; IT = IT
; OT = OT
; ⊢OT = ⊢OT
; T≈ = T≈
; krip = λ {_} {σ} ⊢σ →
let open ΛRel (krip ⊢σ)
in record
{ IT-rel = ®-one-sided (iA (mt σ)) (iA′ (mt σ)) IT-rel
; ap-rel = λ s∼b b∈ →
let fa , ↘fa , ®fa = helper ⊢σ s∼b b∈
in record
{ fa = fa
; ↘fa = ↘fa
; ®fa = ®fa
}
}
}
where open GluΛ t∼a
helper : Δ ⊢r σ ∶ Γ → Δ ⊢ s ∶ IT [ σ ] ®[ i ] a ∈El iA′ (mt σ) → (a∈ : a ∈′ El i (iA′ (mt σ))) →
∃ λ fa → f [ mt σ ] ∙ a ↘ fa × Δ ⊢ t [ σ ] $ s ∶ OT [ σ , s ] ®[ i ] fa ∈El (ΠRT.T≈T′ (RT′ (mt σ) a∈))
helper {Δ} {σ} ⊢σ s∼a a∈
with krip ⊢σ | El-one-sided (iA′ (mt σ)) (iA (mt σ)) a∈
... | record { ap-rel = ap-rel } | a∈′
with RT (mt σ) a∈′ | RT′ (mt σ) a∈ | ap-rel (®El-one-sided (iA′ (mt σ)) (iA (mt σ)) s∼a) a∈′
... | record { ⟦T⟧ = ⟦T⟧ ; ↘⟦T⟧ = ↘⟦T⟧ ; T≈T′ = T≈T′ }
| record { ↘⟦T⟧ = ↘⟦T⟧′ ; T≈T′ = T≈T′₁ }
| R
rewrite ⟦⟧-det ↘⟦T⟧′ ↘⟦T⟧ = fa , ↘fa , ®El-one-sided T≈T′ T≈T′₁ ®fa
where open ΛKripke R
®-one-sided′ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i)
(A′≈B : A′ ≈ B ∈ 𝕌 i) →
Γ ⊢ T ®[ i ] A≈B →
Γ ⊢ T ®[ i ] A′≈B
®-one-sided′ A≈B A′≈B t∼a = ®-swap (𝕌-sym A′≈B) A′≈B (®-one-sided (𝕌-sym A≈B) (𝕌-sym A′≈B) (®-swap A≈B (𝕌-sym A≈B) t∼a))
®El-one-sided′ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i)
(A′≈B : A′ ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Γ ⊢ t ∶ T ®[ i ] a ∈El A′≈B
®El-one-sided′ A≈B A′≈B t∼a = ®El-swap (𝕌-sym A′≈B) A′≈B (®El-one-sided (𝕌-sym A≈B) (𝕌-sym A′≈B) (®El-swap A≈B (𝕌-sym A≈B) t∼a))
®-transport : ∀ {i} (A≈A′ : A ≈ A′ ∈ 𝕌 i)
(B≈B′ : B ≈ B′ ∈ 𝕌 i) →
A ≈ B ∈ 𝕌 i →
Γ ⊢ T ®[ i ] A≈A′ →
Γ ⊢ T ®[ i ] B≈B′
®-transport A≈A′ B≈B′ A≈B t∼a = ®-one-sided B≈A B≈B′ (®-swap A≈B B≈A (®-one-sided A≈A′ A≈B t∼a))
where B≈A = 𝕌-sym A≈B
®El-transport : ∀ {i} (A≈A′ : A ≈ A′ ∈ 𝕌 i)
(B≈B′ : B ≈ B′ ∈ 𝕌 i) →
A ≈ B ∈ 𝕌 i →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈A′ →
Γ ⊢ t ∶ T ®[ i ] a ∈El B≈B′
®El-transport A≈A′ B≈B′ A≈B t∼a = ®El-one-sided B≈A B≈B′ (®El-swap A≈B B≈A (®El-one-sided A≈A′ A≈B t∼a))
where B≈A = 𝕌-sym A≈B
®-≡ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) (A′≈B′ : A′ ≈ B′ ∈ 𝕌 i) → Γ ⊢ T ®[ i ] A≈B → A ≡ A′ → Γ ⊢ T ®[ i ] A′≈B′
®-≡ A≈B A′≈B′ T∼A refl = ®-one-sided A≈B A′≈B′ T∼A
®El-≡ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) (A′≈B′ : A′ ≈ B′ ∈ 𝕌 i) → Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B → A ≡ A′ → Γ ⊢ t ∶ T ®[ i ] a ∈El A′≈B′
®El-≡ A≈B A′≈B′ t∼a refl = ®El-one-sided A≈B A′≈B′ t∼a
private
IT-mon-helper : ∀ {i} (iA : ∀ (κ : UMoT) → A [ κ ] ≈ B [ κ ] ∈ 𝕌 i)
(RT : ∀ {a a′} (κ : UMoT) →
a ≈ a′ ∈ El i (iA κ) →
ΠRT T′ (ρ [ κ ] ↦ a) T″ (ρ′ [ κ ] ↦ a′) (𝕌 i))
(iA′ : ∀ (κ : UMoT) → A [ mt σ ] [ κ ] ≈ B [ mt σ ] [ κ ] ∈ 𝕌 i)
(RT′ : ∀ {a a′} (κ : UMoT) →
a ≈ a′ ∈ El i (iA′ κ) →
ΠRT T′ (ρ [ mt σ ] [ κ ] ↦ a) T″ (ρ′ [ mt σ ] [ κ ] ↦ a′) (𝕌 i)) →
Γ ⊢ T ∶ Se i →
Δ ⊢r σ ∶ Γ →
Δ′ ⊢r τ ∶ Δ →
Δ′ ⊢ T [ σ ∘ τ ] ®[ i ] iA (mt (σ ∘ τ)) →
Δ′ ⊢ T [ σ ] [ τ ] ®[ i ] iA′ (mt τ)
IT-mon-helper {σ = σ} {Δ′ = Δ′} {τ} iA RT iA′ RT′ ⊢T ⊢σ ⊢τ T∼A = ®-≡ (iA (mt (σ ∘ τ)))
(iA′ (mt τ))
(®-resp-≈ (iA (mt (σ ∘ τ))) T∼A (≈-sym ([∘]-Se ⊢T (⊢r⇒⊢s ⊢σ) (⊢r⇒⊢s ⊢τ))))
(sym (D-comp _ (mt σ) (mt τ)))
®-mon : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i)
(A≈Bσ : A [ mt σ ] ≈ B [ mt σ ] ∈ 𝕌 i) →
Γ ⊢ T ®[ i ] A≈B →
Δ ⊢r σ ∶ Γ →
Δ ⊢ T [ σ ] ®[ i ] A≈Bσ
®-mon {_} {_} {σ} {_} {T} {Δ} {i} (ne {C} C≈C′) (ne C≈C′σ) (⊢T , rel) ⊢σ = t[σ]-Se ⊢T (⊢r⇒⊢s ⊢σ) , helper
where helper : Δ′ ⊢r τ ∶ Δ → Δ′ ⊢ sub (sub T σ) τ ≈ Ne⇒Exp (proj₁ (C≈C′σ (map len Δ′) (mt τ))) ∶ Se i
helper {Δ′} {τ} ⊢τ
with C≈C′σ (map len Δ′) (mt τ) | C≈C′ (map len Δ′) (mt (σ ∘ τ)) | rel (⊢r-∘ ⊢σ ⊢τ)
... | u , ↘u , _ | u′ , ↘u′ , _ | Tστ≈
rewrite Dn-comp C (mt σ) (mt τ)
| Re-det ↘u ↘u′ = ≈-trans ([∘]-Se ⊢T (⊢r⇒⊢s ⊢σ) (⊢r⇒⊢s ⊢τ)) Tστ≈
®-mon N N T∼A ⊢σ = ≈-trans ([]-cong-Se′ T∼A (⊢r⇒⊢s ⊢σ)) (N-[] _ (⊢r⇒⊢s ⊢σ))
®-mon (U j<i eq) (U j′<i eq′) T∼A ⊢σ = ≈-trans ([]-cong-Se′ T∼A (⊢r⇒⊢s ⊢σ)) (lift-⊢≈-Se (Se-[] _ (⊢r⇒⊢s ⊢σ)) j<i)
®-mon {□ A} {□ B} {σ} {_} {_} {Δ} {i} (□ A≈B) (□ A≈Bσ) T∼A ⊢σ = record
{ GT = GT [ σ ; 1 ]
; T≈ = ≈-trans ([]-cong-Se′ T≈ ⊢σ′) (□-[] ⊢σ′ ⊢GT)
; krip = helper
}
where open Glu□ T∼A
⊢σ′ = ⊢r⇒⊢s ⊢σ
⊢GT = ®□⇒wf A≈B T∼A
⊢Δ = proj₁ (presup-s ⊢σ′)
⊢Γ = proj₂ (presup-s ⊢σ′)
helper : ∀ Ψs → ⊢ Ψs ++⁺ Δ′ → Δ′ ⊢r τ ∶ Δ → Ψs ++⁺ Δ′ ⊢ GT [ σ ; 1 ] [ τ ; len Ψs ] ®[ i ] A≈Bσ (ins (mt τ) (len Ψs))
helper {Δ′} {τ} Ψs ⊢ΨsΔ ⊢τ = ®-≡ (A≈B (ins (mt σ ø mt τ) (len Ψs)))
(A≈Bσ (ins (mt τ) (len Ψs)))
(®-resp-≈ (A≈B (ins (mt σ ø mt τ) (len Ψs))) GT[]∼ ([]-∘-; Ψs ⊢ΨsΔ′ ⊢GT ⊢σ′ ⊢τ′))
(sym (D-ins-ins′ A (mt σ) (mt τ) (len Ψs)))
where open ER
⊢τ′ = ⊢r⇒⊢s ⊢τ
GT[]∼ = krip Ψs ⊢ΨsΔ (⊢r-∘ ⊢σ ⊢τ)
⊢GT[] = ®⇒ty (A≈B (ins (mt (σ ∘ τ)) (len Ψs))) GT[]∼
⊢ΨsΔ′ = proj₁ (presup-tm ⊢GT[])
®-mon {Π A _ ρ} {_} {σ} {_} {_} {Δ} {i} (Π iA RT) (Π iA′ RT′) T∼A ⊢σ = record
{ IT = IT [ σ ]
; OT = OT [ q σ ]
; ⊢OT = t[σ]-Se ⊢OT (⊢q ⊢σ′ ⊢IT)
; T≈ = ≈-trans ([]-cong-Se′ T≈ (⊢r⇒⊢s ⊢σ)) (Π-[] (⊢r⇒⊢s ⊢σ) ⊢IT ⊢OT)
; krip = λ ⊢τ → record
{ IT-rel = IT-mon-helper iA RT iA′ RT′ ⊢IT ⊢σ ⊢τ (ΠRel.IT-rel (krip (⊢r-∘ ⊢σ ⊢τ)))
; OT-rel = helper′ ⊢τ
}
}
where open GluΠ T∼A
⊢σ′ = ⊢r⇒⊢s ⊢σ
⊢IT = ®Π-wf iA RT T∼A
helper′ : Δ′ ⊢r τ ∶ Δ → Δ′ ⊢ s ∶ IT [ σ ] [ τ ] ®[ i ] a ∈El (iA′ (mt τ)) → (a∈ : a ∈′ El i (iA′ (mt τ))) → Δ′ ⊢ OT [ q σ ] [ τ , s ] ®[ i ] (ΠRT.T≈T′ (RT′ (mt τ) a∈))
helper′ {Δ′} {τ} {s} ⊢τ s∼a a∈
with ΠRel.OT-rel (krip (⊢r-∘ ⊢σ ⊢τ))
| ®El-resp-T≈ (iA (mt (σ ∘ τ))) (®El-≡ (iA′ (mt τ)) (iA (mt (σ ∘ τ))) s∼a (D-comp _ (mt σ) (mt τ))) ([∘]-Se ⊢IT ⊢σ′ (⊢r⇒⊢s ⊢τ))
| El-transp (iA′ (mt τ)) (iA (mt (σ ∘ τ))) a∈ (D-comp _ (mt σ) (mt τ))
... | OT-rel | s∼a′ | a∈′
with RT (mt σ ø mt τ) a∈′ | RT′ (mt τ) a∈ | OT-rel s∼a′ a∈′
... | record { ⟦T⟧ = ⟦T⟧ ; ↘⟦T⟧ = ↘⟦T⟧ ; T≈T′ = T≈T′ }
| record { ↘⟦T⟧ = ↘⟦T⟧′ ; T≈T′ = T≈T′₁ }
| rel
rewrite ρ-comp ρ (mt σ) (mt τ)
| ⟦⟧-det ↘⟦T⟧′ ↘⟦T⟧ = ®-resp-≈ T≈T′₁ (®-≡ T≈T′ T≈T′₁ rel refl) ([]-q-∘-, ⊢OT ⊢σ′ ⊢τ′ ⊢s)
where open ER
⊢τ′ = ⊢r⇒⊢s ⊢τ
⊢s = ®El⇒tm (iA′ (mt τ)) s∼a
®El-mon : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i)
(A≈Bσ : A [ mt σ ] ≈ B [ mt σ ] ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Δ ⊢r σ ∶ Γ →
Δ ⊢ t [ σ ] ∶ T [ σ ] ®[ i ] a [ mt σ ] ∈El A≈Bσ
®El-mon {_} {_} {σ} {_} {t} {T} {a} {Δ} {i} (ne {C} C≈C′) (ne C≈C′σ) (ne {c} c∈ , glu) ⊢σ
= ne (Bot-mon (mt σ) c∈) , record
{ t∶T = t[σ] t∶T ⊢σ′
; ⊢T = t[σ]-Se ⊢T ⊢σ′
; krip = helper
}
where open GluNe glu
⊢σ′ = ⊢r⇒⊢s ⊢σ
helper : Δ′ ⊢r τ ∶ Δ → Δ′ ⊢ T [ σ ] [ τ ] ≈ Ne⇒Exp (proj₁ (C≈C′σ (map len Δ′) (mt τ))) ∶ Se i
× Δ′ ⊢ t [ σ ] [ τ ] ≈ Ne⇒Exp (proj₁ (Bot-mon (mt σ) c∈ (map len Δ′) (mt τ))) ∶ T [ σ ] [ τ ]
helper {Δ′} {τ} ⊢τ
with C≈C′ (map len Δ′) (mt σ ø mt τ) | C≈C′σ (map len Δ′) (mt τ)
| c∈ (map len Δ′) (mt σ ø mt τ) | Bot-mon (mt σ) c∈ (map len Δ′) (mt τ)
| krip (⊢r-∘ ⊢σ ⊢τ)
... | V , ↘V , _ | V′ , ↘V′ , _ | u , ↘u , _ | u′ , ↘u′ , _ | Tστ≈ , tστ≈
rewrite Dn-comp C (mt σ) (mt τ)
| Dn-comp c (mt σ) (mt τ)
| Re-det ↘V ↘V′
| Re-det ↘u ↘u′ = ≈-trans ([∘]-Se ⊢T ⊢σ′ (⊢r⇒⊢s ⊢τ)) Tστ≈ , ≈-conv (≈-trans (≈-sym ([∘] (⊢r⇒⊢s ⊢τ) ⊢σ′ t∶T)) tστ≈) (≈-sym ([∘]-Se ⊢T ⊢σ′ (⊢r⇒⊢s ⊢τ)))
®El-mon N N (t∼a , T≈N) ⊢σ = ®Nat-mon t∼a ⊢σ , ≈-trans ([]-cong-Se′ T≈N (⊢r⇒⊢s ⊢σ)) (N-[] _ (⊢r⇒⊢s ⊢σ))
®El-mon {_} {_} {σ} (U j<i eq) (U j′<i eq′) t∼a ⊢σ
rewrite Glu-wellfounded-≡ j<i
| Glu-wellfounded-≡ j′<i = record
{ t∶T = t[σ] t∶T (⊢r⇒⊢s ⊢σ)
; T≈ = ≈-trans ([]-cong-Se′ T≈ (⊢r⇒⊢s ⊢σ)) (lift-⊢≈-Se (Se-[] _ (⊢r⇒⊢s ⊢σ)) j<i)
; A∈𝕌 = 𝕌-mon (mt σ) A∈𝕌
; rel = ®-mon A∈𝕌 (𝕌-mon (mt σ) A∈𝕌) rel ⊢σ
}
where open GluU t∼a
®El-mon {_} {_} {σ} {_} {t} {_} {_} {Δ} {i} (□ A≈B) (□ A≈Bσ) t∼a ⊢σ = record
{ GT = GT [ σ ; 1 ]
; t∶T = t[σ] t∶T ⊢σ′
; a∈El = El-mon (□ A≈B) (mt σ) (□ A≈Bσ) a∈El
; T≈ = ≈-trans ([]-cong-Se′ T≈ ⊢σ′) (□-[] ⊢σ′ ⊢GT)
; krip = λ {_} {τ} Ψs ⊢ΨsΔ ⊢τ →
let open □Krip (krip Ψs ⊢ΨsΔ (⊢r-∘ ⊢σ ⊢τ))
in record
{ ua = ua
; ↘ua = subst (unbox∙ len Ψs ,_↘ ua) (sym (D-comp _ (mt σ) (mt τ))) ↘ua
; rel = helper Ψs ⊢ΨsΔ ⊢τ
}
}
where open Glubox t∼a
⊢σ′ = ⊢r⇒⊢s ⊢σ
⊢GT = ®□⇒wf A≈B (®El⇒® (□ A≈B) t∼a)
helper : ∀ Ψs → (⊢ΨsΔ : ⊢ Ψs ++⁺ Δ′) → (⊢τ : Δ′ ⊢r τ ∶ Δ) → Ψs ++⁺ Δ′ ⊢ unbox (len Ψs) (t [ σ ] [ τ ]) ∶ GT [ σ ; 1 ] [ τ ; len Ψs ] ®[ i ] □Krip.ua (krip Ψs ⊢ΨsΔ (⊢r-∘ ⊢σ ⊢τ)) ∈El A≈Bσ (ins (mt τ) (len Ψs))
helper {Δ′} {τ} Ψs ⊢ΨsΔ ⊢τ
with krip Ψs ⊢ΨsΔ (⊢r-∘ ⊢σ ⊢τ)
... | record { ua = ua ; rel = rel }
with A≈B (ins (mt (σ ∘ τ)) (len Ψs)) | A≈Bσ (ins (mt τ) (len Ψs))
... | Aστ≈ | Aστ≈′
with ®El-≡ Aστ≈ Aστ≈′ rel (sym (D-ins-ins′ _ (mt σ) (mt τ) (len Ψs)))
... | res
rewrite D-ap-vone ua = ®El-resp-≈ Aστ≈′ (®El-resp-T≈ Aστ≈′ res GTστ;≈)
(≈-conv (unbox-cong Ψs (≈-conv ([∘] ⊢τ′ ⊢σ′ t∶T) (≈-trans ([]-cong-Se′ T≈ ⊢στ) (□-[] ⊢στ ⊢GT))) ⊢ΨsΔ′ refl)
(≈-trans (≈-sym ([]-∘-;′ Ψs ⊢ΨsΔ′ ⊢GT ⊢στ)) GTστ;≈))
where ⊢ub = ®El⇒tm Aστ≈ rel
⊢ΨsΔ′ = proj₁ (presup-tm ⊢ub)
⊢τ′ = ⊢r⇒⊢s ⊢τ
⊢στ = s-∘ ⊢τ′ ⊢σ′
GTστ;≈ = []-∘-; Ψs ⊢ΨsΔ′ ⊢GT ⊢σ′ ⊢τ′
®El-mon {Π A _ ρ} {_} {σ} {_} {t} {_} {f} {Δ} {i} (Π iA RT) (Π iA′ RT′) t∼a ⊢σ = record
{ t∶T = t[σ] t∶T ⊢σ′
; a∈El = El-mon (Π iA RT) (mt σ) (Π iA′ RT′) a∈El
; IT = IT [ σ ]
; OT = OT [ q σ ]
; ⊢OT = t[σ]-Se ⊢OT ⊢qσ
; T≈ = ≈-trans ([]-cong-Se′ T≈ ⊢σ′) (Π-[] ⊢σ′ ⊢IT ⊢OT)
; krip = λ {_} {τ} ⊢τ →
let open ΛRel (krip (⊢r-∘ ⊢σ ⊢τ))
in record
{ IT-rel = IT-mon-helper iA RT iA′ RT′ ⊢IT ⊢σ ⊢τ IT-rel
; ap-rel = λ s∼a a∈ →
let fa , ↘fa , ®fa = helper ⊢τ s∼a a∈
in record
{ fa = fa
; ↘fa = ↘fa
; ®fa = ®fa
}
}
}
where open GluΛ t∼a
⊢σ′ = ⊢r⇒⊢s ⊢σ
⊢IT = ®Π-wf iA RT (®El⇒® (Π iA RT) t∼a)
⊢qσ = ⊢q ⊢σ′ ⊢IT
helper : Δ′ ⊢r τ ∶ Δ → Δ′ ⊢ s ∶ IT [ σ ] [ τ ] ®[ i ] a ∈El (iA′ (mt τ)) → (a∈ : a ∈′ El i (iA′ (mt τ))) →
∃ λ fa → f [ mt σ ] [ mt τ ] ∙ a ↘ fa × Δ′ ⊢ t [ σ ] [ τ ] $ s ∶ OT [ q σ ] [ τ , s ] ®[ i ] fa ∈El ΠRT.T≈T′ (RT′ (mt τ) a∈)
helper {Δ′} {τ} ⊢τ s∼a a∈
with El-transp (iA′ (mt τ)) (iA (mt σ ø mt τ)) a∈ (D-comp _ (mt σ) (mt τ))
... | a∈′
with ΛRel.flipped-ap-rel (krip (⊢r-∘ ⊢σ ⊢τ)) a∈′
| ®El-≡ (iA′ (mt τ)) (iA (mt σ ø mt τ)) (®El-resp-T≈ (iA′ (mt τ)) s∼a ([∘]-Se ⊢IT ⊢σ′ (⊢r⇒⊢s ⊢τ))) (D-comp _ (mt σ) (mt τ))
... | rel | s∼a′
with iA (mt σ ø mt τ) | RT (mt σ ø mt τ) a∈′ | iA′ (mt τ) | RT′ (mt τ) a∈
... | Aστ≈ | record { ⟦T⟧ = ⟦T⟧ ; ↘⟦T⟧ = ↘⟦T⟧ ; T≈T′ = T≈T′ }
| Aστ≈′ | record { ↘⟦T⟧ = ↘⟦T⟧′ ; T≈T′ = T≈T′₁ }
with rel s∼a′
... | record { fa = fa ; ↘fa = ↘fa ; ®fa = ®fa }
rewrite ρ-comp ρ (mt σ) (mt τ)
| D-comp f (mt σ) (mt τ)
| ⟦⟧-det ↘⟦T⟧′ ↘⟦T⟧ = fa , ↘fa
, ®El-one-sided T≈T′ T≈T′₁
(®El-resp-≈ T≈T′
(®El-resp-T≈ T≈T′ ®fa OT,≈)
(≈-conv ($-cong (≈-conv ([∘] ⊢τ′ ⊢σ′ t∶T) (≈-trans ([]-cong-Se′ T≈ ⊢στ) (Π-[] ⊢στ ⊢IT ⊢OT))) (≈-refl ⊢s′))
(≈-trans (≈-sym ([]-q-∘-,′ ⊢OT ⊢στ ⊢s′)) OT,≈)))
where ⊢τ′ = ⊢r⇒⊢s ⊢τ
⊢s = ®El⇒tm Aστ≈′ s∼a
⊢s′ = ®El⇒tm Aστ≈ s∼a′
⊢στ = s-∘ ⊢τ′ ⊢σ′
OT,≈ = []-q-∘-, ⊢OT ⊢σ′ ⊢τ′ ⊢s
®-mon′ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ T ®[ i ] A≈B →
Δ ⊢r σ ∶ Γ →
Δ ⊢ T [ σ ] ®[ i ] 𝕌-mon (mt σ) A≈B
®-mon′ {σ = σ} A≈B = ®-mon A≈B (𝕌-mon (mt σ) A≈B)
®El-mon′ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Δ ⊢r σ ∶ Γ →
Δ ⊢ t [ σ ] ∶ T [ σ ] ®[ i ] a [ mt σ ] ∈El 𝕌-mon (mt σ) A≈B
®El-mon′ {σ = σ} A≈B = ®El-mon A≈B (𝕌-mon (mt σ) A≈B)