{-# OPTIONS --without-K --safe #-}

-- This file defines the syntax of Mints
module Mints.Statics.Syntax where

open import Level renaming (suc to succ)

open import Lib
open import LibNonEmpty public

-- O computes the truncation offset of A when truncated by a length
record HasO {i} (A : Set i) : Set i where
  field
    O : A    

open HasO {{...}} public

-- _∥_ computes the truncation of A by a length
record HasTr {i} (A : Set i) : Set i where
  infixl 5 _∥_
  field
    _∥_ : A    A

open HasTr {{...}} public

-- A is monotonic relative to B
record Monotone {i j} (A : Set i) (B : Set j) : Set (i  j) where
  infixl 4.5 _[_]
  field
    _[_] : A  B  A

open Monotone {{...}} public

infixl 4.2 _$_
infixl 4.5 _[|_]

mutual
  -- Type is also an expression.
  Typ = Exp

  -- Definition of terms in Mints
  data Exp : Set where
    -- type constructors
    N     : Typ
    Π     : Typ  Typ  Typ
    Se    : (i : )  Typ
         : Typ  Typ
    v     : (x : )  Exp
    -- natural numebrs
    ze    : Exp
    su    : Exp  Exp
    rec   : (T : Typ) (s r t : Exp)  Exp
    -- functions
    Λ     : Exp  Exp
    _$_   : Exp  Exp  Exp
    -- modal terms
    box   : Exp  Exp
    unbox :   Exp  Exp
    -- explicit substitutions
    sub   : Exp  Substs  Exp

  -- Definition of (unified) substitutions in Mints
  infixl 3 _∘_
  infixl 5 _;_
  data Substs : Set where
    -- identity
    I    : Substs
    -- one step weakening
    wk   : Substs
    -- composition
    _∘_  : Substs  Substs  Substs
    -- extension
    _,_  : Substs  Exp  Substs
    -- modal transformation (MoT)
    _;_ : Substs    Substs

-- Individual contexts
Ctx : Set
Ctx = List Typ

-- Context stacks are an nonempty list of contexts.
Ctxs : Set
Ctxs = List⁺ Ctx

-- Cons the topmost context
infixr 5 _∺_
_∺_ : Typ  Ctxs  Ctxs
T  (Ψ  Ψs) = (T  Ψ)  Ψs


-- Concatenate the topmost context
infixr 4.5 _++⁻_

_++⁻_ : List Typ  Ctxs  Ctxs
_++⁻_ Ψ (Ψ′  Γ) = (Ψ ++ Ψ′)  Γ

-- Exp is monotonic and transformed by substitutions
instance
  ExpMonotone : Monotone Exp Substs
  ExpMonotone = record { _[_] = sub }

-- quick helpers
----------------

-- Projection of substitutions
p : Substs  Substs
p σ = wk  σ

-- Nondependent functions
infixr 5 _⟶_
_⟶_ : Typ  Typ  Typ
S  T = Π S (T [ wk ])

-- Substitute the first open variable of t with s
_[|_] : Exp  Exp  Exp
t [| s ] = t [ I , s ]

-- Weakening of substitutions by one variable
q : Substs  Substs
q σ = (σ  wk) , v 0

-- O (truncation offset) and truncation for syntactic substitutions
S-O : Substs    
S-O σ 0              = 0
S-O I (suc n)        = suc n
S-O wk (suc n)       = suc n
S-O (σ , t) (suc n)  = S-O σ (suc n)
S-O (σ  m) (suc n) = m + S-O σ n
S-O (σ  δ) (suc n)  = S-O δ (S-O σ (suc n))

instance
  SubstsHasO : HasO Substs
  SubstsHasO = record { O = S-O }

S-Tr : Substs    Substs
S-Tr σ 0              = σ
S-Tr I (suc n)        = I
S-Tr wk (suc n)       = I
S-Tr (σ , t) (suc n)  = S-Tr σ (suc n)
S-Tr (σ  m) (suc n) = S-Tr σ n
S-Tr (σ  δ) (suc n)  = S-Tr σ (suc n)  S-Tr δ (O σ (suc n))

instance
  SubstsHasTr : HasTr Substs
  SubstsHasTr = record { _∥_ = S-Tr }

-- Neutral and normal forms
--
-- Here we define β-η normal form
mutual
  data Ne : Set where
    v     : (x : )  Ne
    rec   : (T : Nf) (z s : Nf)  Ne  Ne
    _$_   : Ne  (n : Nf)  Ne
    unbox :   Ne  Ne

  data Nf : Set where
    ne  : (u : Ne)  Nf
    N   : Nf
    Π   : Nf  Nf  Nf
    Se  : (i : )  Nf
       : Nf  Nf
    ze  : Nf
    su  : Nf  Nf
    Λ   : Nf  Nf
    box : Nf  Nf

variable
  S S′ S″ : Typ
  T T′ T″ : Typ
  Ψ Ψ′ Ψ″ : Ctx
  Ψs Ψs′  : List Ctx
  Γ Γ′ Γ″ : Ctxs
  Δ Δ′ Δ″ : Ctxs
  t t′ t″ : Exp
  r r′ r″ : Exp
  s s′ s″ : Exp
  σ σ′ σ″ : Substs
  τ τ′ τ″ : Substs
  u u′ u″ : Ne
  V V′ V″ : Ne
  w w′ w″ : Nf
  W W′ W″ : Nf

-- Conversion from neutrals/normals to terms
mutual
  Ne⇒Exp : Ne  Exp
  Ne⇒Exp (v x)         = v x
  Ne⇒Exp (rec T z s u) = rec (Nf⇒Exp T) (Nf⇒Exp z) (Nf⇒Exp s) (Ne⇒Exp u)
  Ne⇒Exp (u $ n)       = Ne⇒Exp u $ Nf⇒Exp n
  Ne⇒Exp (unbox n u)   = unbox n (Ne⇒Exp u)

  Nf⇒Exp : Nf  Exp
  Nf⇒Exp (ne u)  = Ne⇒Exp u
  Nf⇒Exp ze      = ze
  Nf⇒Exp (su w)  = su (Nf⇒Exp w)
  Nf⇒Exp (Λ w)   = Λ (Nf⇒Exp w)
  Nf⇒Exp N       = N
  Nf⇒Exp (Π S T) = Π (Nf⇒Exp S) (Nf⇒Exp T)
  Nf⇒Exp (Se i)  = Se i
  Nf⇒Exp ( w)   =  (Nf⇒Exp w)
  Nf⇒Exp (box w) = box (Nf⇒Exp w)

-- Dependent context lookup
infix 2 _∶_∈!_
data _∶_∈!_ :   Typ  Ctxs  Set where
  here  : 0  T [ wk ] ∈! T  Γ
  there :  {n T S}  n  T ∈! Γ  suc n  T [ wk ] ∈! S  Γ