{-# OPTIONS --without-K --safe #-}
open import Axiom.Extensionality.Propositional
module Mints.Completeness.Box (fext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) where
open import Data.Nat.Properties
open import Lib
open import Mints.Completeness.LogRel
open import Mints.Semantics.Properties.Domain fext
open import Mints.Semantics.Properties.Evaluation fext
open import Mints.Semantics.Properties.PER fext
□-[]′ : ∀ {i} →
Γ ⊨s σ ∶ Δ →
([] ∷⁺ Δ) ⊨ T ∶ Se i →
Γ ⊨ □ T [ σ ] ≈ □ (T [ σ ; 1 ]) ∶ Se i
□-[]′ {_} {σ} {_} {T} {i} (⊨Γ , ⊨Δ , ⊨σ) (κ-cong ⊨Δ₁ , _ , ⊨T) = ⊨Γ , _ , helper
where helper : ρ ≈ ρ′ ∈ ⟦ ⊨Γ ⟧ρ →
Σ (RelTyp _ (Se i) ρ (Se i) ρ′)
λ rel → RelExp (□ T [ σ ]) ρ (□ (T [ σ ; 1 ])) ρ′ (El _ (RelTyp.T≈T′ rel))
helper {ρ} {ρ′} ρ≈ρ′ = help
where module σ = RelSubsts (⊨σ ρ≈ρ′)
help : Σ (RelTyp _ (Se i) ρ (Se i) ρ′)
λ rel → RelExp (□ T [ σ ]) ρ (□ (T [ σ ; 1 ])) ρ′ (El _ (RelTyp.T≈T′ rel))
help
with ⊨T {ext σ.⟦σ⟧ 1} {ext σ.⟦δ⟧ 1} (⊨-irrel ⊨Δ ⊨Δ₁ σ.σ≈δ , refl)
... | record { ↘⟦T⟧ = ⟦Se⟧ _ ; ↘⟦T′⟧ = ⟦Se⟧ _ ; T≈T′ = U i<j _ }
, record { ↘⟦t⟧ = ↘⟦t⟧ ; ↘⟦t′⟧ = ↘⟦t′⟧ ; t≈t′ = t≈t′ }
rewrite 𝕌-wellfounded-≡-𝕌 _ i<j = record
{ ↘⟦T⟧ = ⟦Se⟧ _
; ↘⟦T′⟧ = ⟦Se⟧ _
; T≈T′ = U′ ≤-refl
}
, record
{ ↘⟦t⟧ = ⟦[]⟧ σ.↘⟦σ⟧ (⟦□⟧ ↘⟦t⟧)
; ↘⟦t′⟧ = ⟦□⟧ (⟦[]⟧ (⟦;⟧ σ.↘⟦δ⟧) ↘⟦t′⟧)
; t≈t′ = PERDef.□ λ κ → subst (_ ≈ _ ∈_) (sym (𝕌-wellfounded-≡-𝕌 (suc i) ≤-refl)) (𝕌-mon κ t≈t′)
}
□-cong′ : ∀ {i} →
[] ∷⁺ Γ ⊨ T ≈ T′ ∶ Se i →
Γ ⊨ □ T ≈ □ T′ ∶ Se i
□-cong′ {_} {T} {T′} {i} (κ-cong ⊨Γ , _ , T≈T′) = ⊨Γ , _ , helper
where helper : ρ ≈ ρ′ ∈ ⟦ ⊨Γ ⟧ρ →
Σ (RelTyp _ (Se i) ρ (Se i) ρ′)
λ rel → RelExp (□ T) ρ (□ T′) ρ′ (El _ (RelTyp.T≈T′ rel))
helper {ρ} {ρ′} ρ≈ρ′
with T≈T′ {ext ρ 1} {ext ρ′ 1} (ρ≈ρ′ , refl)
... | record { ↘⟦T⟧ = ⟦Se⟧ _ ; ↘⟦T′⟧ = ⟦Se⟧ _ ; T≈T′ = U i<j _ }
, record { ↘⟦t⟧ = ↘⟦t⟧ ; ↘⟦t′⟧ = ↘⟦t′⟧ ; t≈t′ = t≈t′ }
rewrite 𝕌-wellfounded-≡-𝕌 _ i<j = record
{ ↘⟦T⟧ = ⟦Se⟧ _
; ↘⟦T′⟧ = ⟦Se⟧ _
; T≈T′ = U′ i<j
}
, record
{ ↘⟦t⟧ = ⟦□⟧ ↘⟦t⟧
; ↘⟦t′⟧ = ⟦□⟧ ↘⟦t′⟧
; t≈t′ = subst (□ _ ≈ □ _ ∈_) (sym (𝕌-wellfounded-≡-𝕌 _ i<j)) (□ λ κ → 𝕌-mon κ t≈t′)
}
box-cong′ : [] ∷⁺ Γ ⊨ t ≈ t′ ∶ T →
Γ ⊨ box t ≈ box t′ ∶ □ T
box-cong′ {_} {t} {t′} {T} (κ-cong ⊨Γ , _ , t≈t′) = ⊨Γ , _ , helper
where helper : ρ ≈ ρ′ ∈ ⟦ ⊨Γ ⟧ρ →
Σ (RelTyp _ (□ T) ρ (□ T) ρ′)
λ rel → RelExp (box t) ρ (box t′) ρ′ (El _ (RelTyp.T≈T′ rel))
helper {ρ} {ρ′} ρ≈ρ′
with rt , re ← t≈t′ {ext ρ 1} {ext ρ′ 1} (ρ≈ρ′ , refl) = record
{ ↘⟦T⟧ = ⟦□⟧ rt.↘⟦T⟧
; ↘⟦T′⟧ = ⟦□⟧ rt.↘⟦T′⟧
; T≈T′ = □ λ κ → 𝕌-mon κ rt.T≈T′
}
, record
{ ↘⟦t⟧ = ⟦box⟧ re.↘⟦t⟧
; ↘⟦t′⟧ = ⟦box⟧ re.↘⟦t′⟧
; t≈t′ = λ n κ → record
{ ↘ua = box↘ n
; ↘ub = box↘ n
; ua≈ub = subst₂ (_≈_∈ El _ (𝕌-mon (ins κ n) rt.T≈T′))
(sym (D-ins-ins re.⟦t⟧ κ n))
(sym (D-ins-ins re.⟦t′⟧ κ n))
(El-mon rt.T≈T′ (ins κ n) (𝕌-mon (ins κ n) rt.T≈T′) re.t≈t′)
}
}
where module rt = RelTyp rt
module re = RelExp re
unbox-cong′ : ∀ {n} Ψs →
Γ ⊨ t ≈ t′ ∶ □ T →
⊨ Ψs ++⁺ Γ →
len Ψs ≡ n →
(Ψs ++⁺ Γ) ⊨ unbox n t ≈ unbox n t′ ∶ T [ I ; n ]
unbox-cong′ {_} {t} {t′} {T} {n} Ψs (⊨Γ , _ , t≈t′) ⊨ΨsΓ refl = ⊨ΨsΓ , _ , helper
where helper : ρ ≈ ρ′ ∈ ⟦ ⊨ΨsΓ ⟧ρ →
Σ (RelTyp _ (T [ I ; n ]) ρ (T [ I ; n ]) ρ′)
λ rel → RelExp (unbox n t) ρ (unbox n t′) ρ′ (El _ (RelTyp.T≈T′ rel))
helper {ρ} {ρ′} ρ≈ρ′
with ⊨Γ₁ ← ⊨-resp-∥ Ψs Ψs ⊨ΨsΓ refl
| ρ≈ρ′∥n ← ⟦⟧ρ-resp-∥ Ψs Ψs ⊨ΨsΓ refl ρ≈ρ′
with t≈t′ (⊨-irrel ⊨Γ₁ ⊨Γ ρ≈ρ′∥n)
... | record { ⟦T⟧ = □ ⟦T⟧ ; ⟦T′⟧ = □ ⟦T′⟧ ; ↘⟦T⟧ = ⟦□⟧ ↘⟦T⟧ ; ↘⟦T′⟧ = ⟦□⟧ ↘⟦T′⟧ ; T≈T′ = □ A≈A′ }
, re = record
{ ↘⟦T⟧ = ⟦[]⟧ (⟦;⟧ ⟦I⟧) (subst (⟦ T ⟧_↘ ⟦T⟧ [ ins vone (O ρ n) ]) (ext1-mon (ρ ∥ n) (O ρ n)) (⟦⟧-mon (ins vone (O ρ n)) ↘⟦T⟧))
; ↘⟦T′⟧ = ⟦[]⟧ (⟦;⟧ ⟦I⟧) (subst₂ (λ x y → ⟦ T ⟧ x ↘ ⟦T′⟧ [ ins vone y ]) (ext1-mon (ρ′ ∥ n) (O ρ′ n)) (sym O≡) (⟦⟧-mon (ins vone (O ρ′ n)) ↘⟦T′⟧))
; T≈T′ = A≈A′ (ins vone (O ρ n))
}
, record
{ ↘⟦t⟧ = ⟦unbox⟧ n re.↘⟦t⟧ (subst (unbox∙ O ρ n ,_↘ ua) (D-ap-vone re.⟦t⟧) ↘ua)
; ↘⟦t′⟧ = ⟦unbox⟧ n re.↘⟦t′⟧ (subst₂ (unbox∙_,_↘ ub) O≡ (D-ap-vone re.⟦t′⟧) ↘ub)
; t≈t′ = ua≈ub
}
where module re = RelExp re
open □̂ (re.t≈t′ (O ρ n) vone)
O≡ = ⟦⟧ρ-resp-O ⊨ΨsΓ ρ≈ρ′ (length-<-++⁺ Ψs)
box-[]′ : Γ ⊨s σ ∶ Δ →
([] ∷⁺ Δ) ⊨ t ∶ T →
Γ ⊨ box t [ σ ] ≈ box (t [ σ ; 1 ]) ∶ □ T [ σ ]
box-[]′ {_} {σ} {_} {t} {T} (⊨Γ , ⊨Δ , ⊨σ) (κ-cong ⊨Δ₁ , _ , ⊨t) = ⊨Γ , _ , helper
where helper : ρ ≈ ρ′ ∈ ⟦ ⊨Γ ⟧ρ →
Σ (RelTyp _ (□ T [ σ ]) ρ (□ T [ σ ]) ρ′)
λ rel → RelExp (box t [ σ ]) ρ (box (t [ σ ; 1 ])) ρ′ (El _ (RelTyp.T≈T′ rel))
helper {ρ} {ρ′} ρ≈ρ′ = help
where module σ = RelSubsts (⊨σ ρ≈ρ′)
help : Σ (RelTyp _ (□ T [ σ ]) ρ (□ T [ σ ]) ρ′)
λ rel → RelExp (box t [ σ ]) ρ (box (t [ σ ; 1 ])) ρ′ (El _ (RelTyp.T≈T′ rel))
help
with rt , re ← ⊨t {ext σ.⟦σ⟧ 1} {ext σ.⟦δ⟧ 1} (⊨-irrel ⊨Δ ⊨Δ₁ σ.σ≈δ , refl) = record
{ ↘⟦T⟧ = ⟦[]⟧ σ.↘⟦σ⟧ (⟦□⟧ rt.↘⟦T⟧)
; ↘⟦T′⟧ = ⟦[]⟧ σ.↘⟦δ⟧ (⟦□⟧ rt.↘⟦T′⟧)
; T≈T′ = □ λ κ → 𝕌-mon κ rt.T≈T′
}
, record
{ ↘⟦t⟧ = ⟦[]⟧ σ.↘⟦σ⟧ (⟦box⟧ re.↘⟦t⟧)
; ↘⟦t′⟧ = ⟦box⟧ (⟦[]⟧ (⟦;⟧ σ.↘⟦δ⟧) re.↘⟦t′⟧)
; t≈t′ = λ n κ → record
{ ↘ua = box↘ n
; ↘ub = box↘ n
; ua≈ub = subst₂ (_≈_∈ El _ (𝕌-mon (ins κ n) rt.T≈T′))
(sym (D-ins-ins re.⟦t⟧ κ n))
(sym (D-ins-ins re.⟦t′⟧ κ n))
(El-mon rt.T≈T′ (ins κ n) (𝕌-mon (ins κ n) rt.T≈T′) re.t≈t′)
}
}
where module rt = RelTyp rt
module re = RelExp re
unbox-[]′ : ∀ {n} Ψs →
Δ ⊨ t ∶ □ T →
Γ ⊨s σ ∶ Ψs ++⁺ Δ →
len Ψs ≡ n →
Γ ⊨ unbox n t [ σ ] ≈ unbox (O σ n) (t [ σ ∥ n ]) ∶ T [ (σ ∥ n) ; O σ n ]
unbox-[]′ {_} {t} {T} {_} {σ} {n} Ψs (⊨Δ , _ , ⊨t) (⊨Γ , ⊨ΨsΔ , ⊨σ) refl = ⊨Γ , _ , helper
where helper : ρ ≈ ρ′ ∈ ⟦ ⊨Γ ⟧ρ →
Σ (RelTyp _ (T [ (σ ∥ n) ; O σ n ]) ρ (T [ (σ ∥ n) ; O σ n ]) ρ′)
λ rel → RelExp (unbox n t [ σ ]) ρ (unbox (O σ n) (t [ σ ∥ n ])) ρ′ (El _ (RelTyp.T≈T′ rel))
helper {ρ} {ρ′} ρ≈ρ′ = help
where module σ = RelSubsts (⊨σ ρ≈ρ′)
help : Σ (RelTyp _ (T [ (σ ∥ n) ; O σ n ]) ρ (T [ (σ ∥ n) ; O σ n ]) ρ′)
λ rel → RelExp (unbox n t [ σ ]) ρ (unbox (O σ n) (t [ σ ∥ n ])) ρ′ (El _ (RelTyp.T≈T′ rel))
help
with ⊨Δ₁ ← ⊨-resp-∥ Ψs Ψs ⊨ΨsΔ refl
| σ≈δ∥n ← ⟦⟧ρ-resp-∥ Ψs Ψs ⊨ΨsΔ refl σ.σ≈δ
with ⊨t (⊨-irrel ⊨Δ₁ ⊨Δ σ≈δ∥n)
... | record { ⟦T⟧ = □ ⟦T⟧ ; ⟦T′⟧ = □ ⟦T′⟧ ; ↘⟦T⟧ = ⟦□⟧ ↘⟦T⟧ ; ↘⟦T′⟧ = ⟦□⟧ ↘⟦T′⟧ ; T≈T′ = □ T≈T′ }
, re = record
{ ↘⟦T⟧ = ⟦[]⟧ (⟦;⟧ (∥-⟦⟧s n σ.↘⟦σ⟧))
(subst (⟦ T ⟧_↘ ⟦T⟧ [ ins vone (O ρ (O σ n)) ])
(ext1-mon (σ.⟦σ⟧ ∥ n) (O ρ (O σ n)))
(⟦⟧-mon (ins vone (O ρ (O σ n))) ↘⟦T⟧))
; ↘⟦T′⟧ = ⟦[]⟧ (⟦;⟧ (∥-⟦⟧s n σ.↘⟦δ⟧))
(subst₂ (λ x y → ⟦ T ⟧ x ↘ ⟦T′⟧ [ ins vone y ])
(ext1-mon (σ.⟦δ⟧ ∥ n) (O ρ′ (O σ n)))
O≡′
(⟦⟧-mon (ins vone (O ρ′ (O σ n))) ↘⟦T′⟧))
; T≈T′ = T≈T′ (ins vone (O ρ (O σ n)))
}
, record
{ ↘⟦t⟧ = ⟦[]⟧ σ.↘⟦σ⟧
(⟦unbox⟧ n re.↘⟦t⟧ (subst₂ (unbox∙_,_↘ ua) (O-⟦⟧s n σ.↘⟦σ⟧) (D-ap-vone re.⟦t⟧) ↘ua))
; ↘⟦t′⟧ = ⟦unbox⟧ (O σ n)
(⟦[]⟧ (∥-⟦⟧s n σ.↘⟦δ⟧) re.↘⟦t′⟧)
(subst₂ (unbox∙_,_↘ ub) (sym O≡′) (D-ap-vone re.⟦t′⟧) ↘ub)
; t≈t′ = ua≈ub
}
where module re = RelExp re
open □̂ (re.t≈t′ (O ρ (O σ n)) vone)
O≡ = ⟦⟧ρ-resp-O ⊨ΨsΔ σ.σ≈δ (length-<-++⁺ Ψs)
O≡′ = trans (O-⟦⟧s n σ.↘⟦δ⟧) (sym (trans (O-⟦⟧s n σ.↘⟦σ⟧) O≡))
□-β′ : ∀ {n} Ψs →
[] ∷⁺ Γ ⊨ t ∶ T →
⊨ Ψs ++⁺ Γ →
len Ψs ≡ n →
Ψs ++⁺ Γ ⊨ unbox n (box t) ≈ t [ I ; n ] ∶ T [ I ; n ]
□-β′ {_} {t} {T} {n} Ψs (κ-cong ⊨Γ , _ , ⊨t) ⊨ΨsΓ refl = ⊨ΨsΓ , _ , helper
where helper : ρ ≈ ρ′ ∈ ⟦ ⊨ΨsΓ ⟧ρ →
Σ (RelTyp _ (T [ I ; n ]) ρ (T [ I ; n ]) ρ′)
λ rel → RelExp (unbox n (box t)) ρ (t [ I ; n ]) ρ′ (El _ (RelTyp.T≈T′ rel))
helper {ρ} {ρ′} ρ≈ρ′
with ⊨Γ₁ ← ⊨-resp-∥ Ψs Ψs ⊨ΨsΓ refl
| ρ≈ρ′∥n ← ⟦⟧ρ-resp-∥ Ψs Ψs ⊨ΨsΓ refl ρ≈ρ′
with rt , re ← ⊨t {ext (ρ ∥ n) 1} {ext (ρ′ ∥ n) 1} (⊨-irrel ⊨Γ₁ ⊨Γ ρ≈ρ′∥n , refl) = record
{ ↘⟦T⟧ = ⟦[]⟧ (⟦;⟧ ⟦I⟧) (subst (⟦ T ⟧_↘ rt.⟦T⟧ [ ins vone (O ρ n) ]) (ext1-mon (ρ ∥ n) (O ρ n)) (⟦⟧-mon (ins vone (O ρ n)) rt.↘⟦T⟧))
; ↘⟦T′⟧ = ⟦[]⟧ (⟦;⟧ ⟦I⟧) (subst₂ (λ x y → ⟦ T ⟧ x ↘ rt.⟦T′⟧ [ ins vone y ]) (ext1-mon (ρ′ ∥ n) (O ρ′ n)) (sym O≡) (⟦⟧-mon (ins vone (O ρ′ n)) rt.↘⟦T′⟧))
; T≈T′ = 𝕌-mon (ins vone (O ρ n)) rt.T≈T′
}
, record
{ ↘⟦t⟧ = ⟦unbox⟧ n (⟦box⟧ re.↘⟦t⟧) (box↘ (O ρ n))
; ↘⟦t′⟧ = ⟦[]⟧ (⟦;⟧ ⟦I⟧) (subst (⟦ t ⟧_↘ re.⟦t′⟧ [ ins vone (O ρ n) ]) (trans (ext1-mon (ρ′ ∥ n) (O ρ n)) (cong (ext _) O≡)) (⟦⟧-mon (ins vone (O ρ n)) re.↘⟦t′⟧))
; t≈t′ = El-mon rt.T≈T′ (ins vone (O ρ n)) (𝕌-mon (ins vone (O ρ n)) rt.T≈T′) re.t≈t′
}
where module rt = RelTyp rt
module re = RelExp re
O≡ = ⟦⟧ρ-resp-O ⊨ΨsΓ ρ≈ρ′ (length-<-++⁺ Ψs)
□-η′ : Γ ⊨ t ∶ □ T →
Γ ⊨ t ≈ box (unbox 1 t) ∶ □ T
□-η′ {_} {t} {T} (⊨Γ , _ , ⊨t) = ⊨Γ , _ , helper
where helper : ρ ≈ ρ′ ∈ ⟦ ⊨Γ ⟧ρ →
Σ (RelTyp _ (□ T) ρ (□ T) ρ′)
λ rel → RelExp t ρ (box (unbox 1 t)) ρ′ (El _ (RelTyp.T≈T′ rel))
helper ρ≈ρ′
with ⊨t ρ≈ρ′
... | rt@record { ↘⟦T⟧ = ⟦□⟧ _ ; ↘⟦T′⟧ = ⟦□⟧ _ ; T≈T′ = □ _ }
, re = rt
, record
{ ↘⟦t⟧ = re.↘⟦t⟧
; ↘⟦t′⟧ = ⟦box⟧ (⟦unbox⟧ 1 re.↘⟦t′⟧ (subst (unbox∙ 1 ,_↘ ub) (D-ap-vone re.⟦t′⟧) ↘ub))
; t≈t′ = λ n κ →
let module u = □̂ (re.t≈t′ n κ)
in record
{ u
; ↘ub = subst (unbox∙ n , box (ub [ ins κ 1 ]) ↘_)
(trans (D-ins-ins ub κ n)
(unbox-mon (ins κ n) ↘ub (subst₂ (λ x y → unbox∙ x , y [ κ ] ↘ u.ub) (sym (+-identityʳ _)) (sym (D-ap-vone re.⟦t′⟧)) u.↘ub)))
(box↘ n)
}
}
where module re = RelExp re
open □̂ (re.t≈t′ 1 vone)