{-# OPTIONS --without-K --safe #-}
module Function.Properties.Bijection where
open import Function.Bundles
open import Level using (Level)
open import Relation.Binary hiding (_⇔_)
open import Relation.Binary.PropositionalEquality as P using (setoid)
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
open import Data.Product using (_,_; proj₁; proj₂)
open import Function.Base using (_∘_)
open import Function.Properties.Inverse using (Inverse⇒Equivalence)
import Function.Construct.Identity as Identity
import Function.Construct.Symmetry as Symmetry
import Function.Construct.Composition as Composition
private
variable
a b c ℓ ℓ₁ ℓ₂ ℓ₃ : Level
A B : Set a
T S : Setoid a ℓ
refl : Reflexive (Bijection {a} {ℓ})
refl = Identity.bijection _
sym-≡ : Bijection S (P.setoid B) → Bijection (P.setoid B) S
sym-≡ = Symmetry.bijection-≡
trans : Trans (Bijection {a} {ℓ₁} {b} {ℓ₂}) (Bijection {b} {ℓ₂} {c} {ℓ₃}) Bijection
trans = Composition.bijection
⤖-isEquivalence : IsEquivalence {ℓ = ℓ} _⤖_
⤖-isEquivalence = record
{ refl = refl
; sym = sym-≡
; trans = trans
}
Bijection⇒Inverse : Bijection S T → Inverse S T
Bijection⇒Inverse {S = S} {T = T} b = record
{ f = f
; f⁻¹ = f⁻
; cong₁ = cong
; cong₂ = λ {x} {y} x≈y → injective (begin
f (f⁻ x) ≈⟨ f∘f⁻ x ⟩
x ≈⟨ x≈y ⟩
y ≈˘⟨ f∘f⁻ y ⟩
f (f⁻ y) ∎)
; inverse = f∘f⁻ , injective ∘ f∘f⁻ ∘ f
}
where open SetoidReasoning T; open Bijection b; f∘f⁻ = proj₂ ∘ surjective
Bijection⇒Equivalence : Bijection T S → Equivalence T S
Bijection⇒Equivalence = Inverse⇒Equivalence ∘ Bijection⇒Inverse
⤖⇒↔ : A ⤖ B → A ↔ B
⤖⇒↔ = Bijection⇒Inverse
⤖⇒⇔ : A ⤖ B → A ⇔ B
⤖⇒⇔ = Bijection⇒Equivalence