{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Sublist.Heterogeneous.Properties where
open import Level
open import Data.Bool.Base using (true; false)
open import Data.Empty
open import Data.List.Relation.Unary.All using (Null; []; _∷_)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.List.Base as List hiding (map; _∷ʳ_)
import Data.List.Properties as Lₚ
open import Data.List.Relation.Unary.Any.Properties
using (here-injective; there-injective)
open import Data.List.Relation.Binary.Pointwise as Pw using (Pointwise; []; _∷_)
open import Data.List.Relation.Binary.Sublist.Heterogeneous
open import Data.Maybe.Relation.Unary.All as MAll using (nothing; just)
open import Data.Nat.Base using (ℕ; _≤_; _≥_); open ℕ; open _≤_
import Data.Nat.Properties as ℕₚ
open import Data.Product using (∃₂; _×_; _,_; <_,_>; proj₂; uncurry)
open import Function.Base
open import Function.Bundles using (_⤖_; _⇔_ ; mk⤖; mk⇔)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary using (Dec; does; _because_; yes; no; ¬_)
open import Relation.Nullary.Negation using (¬?)
import Relation.Nullary.Decidable as Dec
open import Relation.Unary as U using (Pred)
open import Relation.Binary hiding (_⇔_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
∷-injectiveˡ : ∀ {x y xs ys} {px qx : R x y} {pxs qxs : Sublist R xs ys} →
(Sublist R (x ∷ xs) (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → px ≡ qx
∷-injectiveˡ P.refl = P.refl
∷-injectiveʳ : ∀ {x y xs ys} {px qx : R x y} {pxs qxs : Sublist R xs ys} →
(Sublist R (x ∷ xs) (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → pxs ≡ qxs
∷-injectiveʳ P.refl = P.refl
∷ʳ-injective : ∀ {y xs ys} {pxs qxs : Sublist R xs ys} →
(Sublist R xs (y ∷ ys) ∋ y ∷ʳ pxs) ≡ (y ∷ʳ qxs) → pxs ≡ qxs
∷ʳ-injective P.refl = P.refl
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
length-mono-≤ : ∀ {as bs} → Sublist R as bs → length as ≤ length bs
length-mono-≤ [] = z≤n
length-mono-≤ (y ∷ʳ rs) = ℕₚ.≤-step (length-mono-≤ rs)
length-mono-≤ (r ∷ rs) = s≤s (length-mono-≤ rs)
fromPointwise : Pointwise R ⇒ Sublist R
fromPointwise [] = []
fromPointwise (p ∷ ps) = p ∷ fromPointwise ps
toPointwise : ∀ {as bs} → length as ≡ length bs →
Sublist R as bs → Pointwise R as bs
toPointwise {bs = []} eq [] = []
toPointwise {bs = b ∷ bs} eq (r ∷ rs) = r ∷ toPointwise (ℕₚ.suc-injective eq) rs
toPointwise {bs = b ∷ bs} eq (b ∷ʳ rs) =
⊥-elim $ ℕₚ.<-irrefl eq (s≤s (length-mono-≤ rs))
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
tail-Sublist : ∀ {as bs} → Sublist R as bs →
MAll.All (λ as → Sublist R as bs) (tail as)
tail-Sublist [] = nothing
tail-Sublist (b ∷ʳ ps) = MAll.map (b ∷ʳ_) (tail-Sublist ps)
tail-Sublist (p ∷ ps) = just (_ ∷ʳ ps)
take-Sublist : ∀ {as bs} n → Sublist R as bs → Sublist R (take n as) bs
take-Sublist n (y ∷ʳ rs) = y ∷ʳ take-Sublist n rs
take-Sublist zero rs = minimum _
take-Sublist (suc n) [] = []
take-Sublist (suc n) (r ∷ rs) = r ∷ take-Sublist n rs
drop-Sublist : ∀ n → Sublist R ⇒ (Sublist R ∘′ drop n)
drop-Sublist n (y ∷ʳ rs) = y ∷ʳ drop-Sublist n rs
drop-Sublist zero rs = rs
drop-Sublist (suc n) [] = []
drop-Sublist (suc n) (r ∷ rs) = _ ∷ʳ drop-Sublist n rs
module _ {a b r p} {A : Set a} {B : Set b}
{R : REL A B r} {P : Pred A p} (P? : U.Decidable P) where
takeWhile-Sublist : ∀ {as bs} → Sublist R as bs → Sublist R (takeWhile P? as) bs
takeWhile-Sublist [] = []
takeWhile-Sublist (y ∷ʳ rs) = y ∷ʳ takeWhile-Sublist rs
takeWhile-Sublist {a ∷ as} (r ∷ rs) with does (P? a)
... | true = r ∷ takeWhile-Sublist rs
... | false = minimum _
dropWhile-Sublist : ∀ {as bs} → Sublist R as bs → Sublist R (dropWhile P? as) bs
dropWhile-Sublist [] = []
dropWhile-Sublist (y ∷ʳ rs) = y ∷ʳ dropWhile-Sublist rs
dropWhile-Sublist {a ∷ as} (r ∷ rs) with does (P? a)
... | true = _ ∷ʳ dropWhile-Sublist rs
... | false = r ∷ rs
filter-Sublist : ∀ {as bs} → Sublist R as bs → Sublist R (filter P? as) bs
filter-Sublist [] = []
filter-Sublist (y ∷ʳ rs) = y ∷ʳ filter-Sublist rs
filter-Sublist {a ∷ as} (r ∷ rs) with does (P? a)
... | true = r ∷ filter-Sublist rs
... | false = _ ∷ʳ filter-Sublist rs
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
∷ˡ⁻ : ∀ {a as bs} → Sublist R (a ∷ as) bs → Sublist R as bs
∷ˡ⁻ (y ∷ʳ rs) = y ∷ʳ ∷ˡ⁻ rs
∷ˡ⁻ (r ∷ rs) = _ ∷ʳ rs
∷ʳ⁻ : ∀ {a as b bs} → ¬ R a b → Sublist R (a ∷ as) (b ∷ bs) →
Sublist R (a ∷ as) bs
∷ʳ⁻ ¬r (y ∷ʳ rs) = rs
∷ʳ⁻ ¬r (r ∷ rs) = ⊥-elim (¬r r)
∷⁻ : ∀ {a as b bs} → Sublist R (a ∷ as) (b ∷ bs) → Sublist R as bs
∷⁻ (y ∷ʳ rs) = ∷ˡ⁻ rs
∷⁻ (x ∷ rs) = rs
module _ {a b c d r} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
{R : REL C D r} where
map⁺ : ∀ {as bs} (f : A → C) (g : B → D) →
Sublist (λ a b → R (f a) (g b)) as bs →
Sublist R (List.map f as) (List.map g bs)
map⁺ f g [] = []
map⁺ f g (y ∷ʳ rs) = g y ∷ʳ map⁺ f g rs
map⁺ f g (r ∷ rs) = r ∷ map⁺ f g rs
map⁻ : ∀ {as bs} (f : A → C) (g : B → D) →
Sublist R (List.map f as) (List.map g bs) →
Sublist (λ a b → R (f a) (g b)) as bs
map⁻ {[]} {bs} f g rs = minimum _
map⁻ {a ∷ as} {b ∷ bs} f g (_ ∷ʳ rs) = b ∷ʳ map⁻ f g rs
map⁻ {a ∷ as} {b ∷ bs} f g (r ∷ rs) = r ∷ map⁻ f g rs
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
++⁺ : ∀ {as bs cs ds} → Sublist R as bs → Sublist R cs ds →
Sublist R (as ++ cs) (bs ++ ds)
++⁺ [] cds = cds
++⁺ (y ∷ʳ abs) cds = y ∷ʳ ++⁺ abs cds
++⁺ (ab ∷ abs) cds = ab ∷ ++⁺ abs cds
++⁻ : ∀ {as bs cs ds} → length as ≡ length bs →
Sublist R (as ++ cs) (bs ++ ds) → Sublist R cs ds
++⁻ {[]} {[]} eq rs = rs
++⁻ {a ∷ as} {b ∷ bs} eq rs = ++⁻ (ℕₚ.suc-injective eq) (∷⁻ rs)
++ˡ : ∀ {as bs} (cs : List B) → Sublist R as bs → Sublist R as (cs ++ bs)
++ˡ zs = ++⁺ (minimum zs)
++ʳ : ∀ {as bs} (cs : List B) → Sublist R as bs → Sublist R as (bs ++ cs)
++ʳ cs [] = minimum cs
++ʳ cs (y ∷ʳ rs) = y ∷ʳ ++ʳ cs rs
++ʳ cs (r ∷ rs) = r ∷ ++ʳ cs rs
concat⁺ : ∀ {ass bss} → Sublist (Sublist R) ass bss →
Sublist R (concat ass) (concat bss)
concat⁺ [] = []
concat⁺ (y ∷ʳ rss) = ++ˡ y (concat⁺ rss)
concat⁺ (rs ∷ rss) = ++⁺ rs (concat⁺ rss)
take⁺ : ∀ {m n as bs} → m ≤ n → Pointwise R as bs →
Sublist R (take m as) (take n bs)
take⁺ z≤n ps = minimum _
take⁺ (s≤s m≤n) [] = []
take⁺ (s≤s m≤n) (p ∷ ps) = p ∷ take⁺ m≤n ps
drop⁺ : ∀ {m n as bs} → m ≥ n → Sublist R as bs →
Sublist R (drop m as) (drop n bs)
drop⁺ {m} z≤n rs = drop-Sublist m rs
drop⁺ (s≤s m≥n) [] = []
drop⁺ (s≤s m≥n) (y ∷ʳ rs) = drop⁺ (ℕₚ.≤-step m≥n) rs
drop⁺ (s≤s m≥n) (r ∷ rs) = drop⁺ m≥n rs
drop⁺-≥ : ∀ {m n as bs} → m ≥ n → Pointwise R as bs →
Sublist R (drop m as) (drop n bs)
drop⁺-≥ m≥n pw = drop⁺ m≥n (fromPointwise pw)
drop⁺-⊆ : ∀ {as bs} m → Sublist R as bs →
Sublist R (drop m as) (drop m bs)
drop⁺-⊆ m = drop⁺ (ℕₚ.≤-refl {m})
module _ {a b r p q} {A : Set a} {B : Set b}
{R : REL A B r} {P : Pred A p} {Q : Pred B q}
(P? : U.Decidable P) (Q? : U.Decidable Q) where
⊆-takeWhile-Sublist : ∀ {as bs} →
(∀ {a b} → R a b → P a → Q b) →
Pointwise R as bs → Sublist R (takeWhile P? as) (takeWhile Q? bs)
⊆-takeWhile-Sublist rp⇒q [] = []
⊆-takeWhile-Sublist {a ∷ as} {b ∷ bs} rp⇒q (p ∷ ps) with P? a | Q? b
... | false because _ | _ = minimum _
... | true because _ | true because _ = p ∷ ⊆-takeWhile-Sublist rp⇒q ps
... | yes pa | no ¬qb = ⊥-elim $ ¬qb $ rp⇒q p pa
⊇-dropWhile-Sublist : ∀ {as bs} →
(∀ {a b} → R a b → Q b → P a) →
Pointwise R as bs → Sublist R (dropWhile P? as) (dropWhile Q? bs)
⊇-dropWhile-Sublist rq⇒p [] = []
⊇-dropWhile-Sublist {a ∷ as} {b ∷ bs} rq⇒p (p ∷ ps) with P? a | Q? b
... | true because _ | true because _ = ⊇-dropWhile-Sublist rq⇒p ps
... | true because _ | false because _ =
b ∷ʳ dropWhile-Sublist P? (fromPointwise ps)
... | false because _ | false because _ = p ∷ fromPointwise ps
... | no ¬pa | yes qb = ⊥-elim $ ¬pa $ rq⇒p p qb
⊆-filter-Sublist : ∀ {as bs} → (∀ {a b} → R a b → P a → Q b) →
Sublist R as bs → Sublist R (filter P? as) (filter Q? bs)
⊆-filter-Sublist rp⇒q [] = []
⊆-filter-Sublist rp⇒q (y ∷ʳ rs) with does (Q? y)
... | true = y ∷ʳ ⊆-filter-Sublist rp⇒q rs
... | false = ⊆-filter-Sublist rp⇒q rs
⊆-filter-Sublist {a ∷ as} {b ∷ bs} rp⇒q (r ∷ rs) with P? a | Q? b
... | true because _ | true because _ = r ∷ ⊆-filter-Sublist rp⇒q rs
... | false because _ | true because _ = _ ∷ʳ ⊆-filter-Sublist rp⇒q rs
... | false because _ | false because _ = ⊆-filter-Sublist rp⇒q rs
... | yes pa | no ¬qb = ⊥-elim $ ¬qb $ rp⇒q r pa
module _ {a r p} {A : Set a} {R : Rel A r} {P : Pred A p} (P? : U.Decidable P) where
takeWhile-filter : ∀ {as} → Pointwise R as as →
Sublist R (takeWhile P? as) (filter P? as)
takeWhile-filter [] = []
takeWhile-filter {a ∷ as} (p ∷ ps) with does (P? a)
... | true = p ∷ takeWhile-filter ps
... | false = minimum _
filter-dropWhile : ∀ {as} → Pointwise R as as →
Sublist R (filter P? as) (dropWhile (¬? ∘ P?) as)
filter-dropWhile [] = []
filter-dropWhile {a ∷ as} (p ∷ ps) with does (P? a)
... | true = p ∷ filter-Sublist P? (fromPointwise ps)
... | false = filter-dropWhile ps
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
reverseAcc⁺ : ∀ {as bs cs ds} → Sublist R as bs → Sublist R cs ds →
Sublist R (reverseAcc cs as) (reverseAcc ds bs)
reverseAcc⁺ [] cds = cds
reverseAcc⁺ (y ∷ʳ abs) cds = reverseAcc⁺ abs (y ∷ʳ cds)
reverseAcc⁺ (r ∷ abs) cds = reverseAcc⁺ abs (r ∷ cds)
ʳ++⁺ : ∀ {as bs cs ds} →
Sublist R as bs →
Sublist R cs ds →
Sublist R (as ʳ++ cs) (bs ʳ++ ds)
ʳ++⁺ = reverseAcc⁺
reverse⁺ : ∀ {as bs} → Sublist R as bs → Sublist R (reverse as) (reverse bs)
reverse⁺ rs = reverseAcc⁺ rs []
reverse⁻ : ∀ {as bs} → Sublist R (reverse as) (reverse bs) → Sublist R as bs
reverse⁻ {as} {bs} p = cast (reverse⁺ p) where
cast = P.subst₂ (Sublist R) (Lₚ.reverse-involutive as) (Lₚ.reverse-involutive bs)
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} {a as b bs} where
∷⁻¹ : R a b → Sublist R as bs ⇔ Sublist R (a ∷ as) (b ∷ bs)
∷⁻¹ r = mk⇔ (r ∷_) ∷⁻
∷ʳ⁻¹ : ¬ R a b → Sublist R (a ∷ as) bs ⇔ Sublist R (a ∷ as) (b ∷ bs)
∷ʳ⁻¹ ¬r = mk⇔ (_ ∷ʳ_) (∷ʳ⁻ ¬r)
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
Sublist-[]-irrelevant : U.Irrelevant (Sublist R [])
Sublist-[]-irrelevant [] [] = P.refl
Sublist-[]-irrelevant (y ∷ʳ p) (.y ∷ʳ q) = P.cong (y ∷ʳ_) (Sublist-[]-irrelevant p q)
toAny-injective : ∀ {xs x} {p q : Sublist R [ x ] xs} → toAny p ≡ toAny q → p ≡ q
toAny-injective {p = y ∷ʳ p} {y ∷ʳ q} =
P.cong (y ∷ʳ_) ∘′ toAny-injective ∘′ there-injective
toAny-injective {p = _ ∷ p} {_ ∷ q} =
P.cong₂ (flip _∷_) (Sublist-[]-irrelevant p q) ∘′ here-injective
fromAny-injective : ∀ {xs x} {p q : Any (R x) xs} →
fromAny {R = R} p ≡ fromAny q → p ≡ q
fromAny-injective {p = here px} {here qx} = P.cong here ∘′ ∷-injectiveˡ
fromAny-injective {p = there p} {there q} =
P.cong there ∘′ fromAny-injective ∘′ ∷ʳ-injective
toAny∘fromAny≗id : ∀ {xs x} (p : Any (R x) xs) → toAny (fromAny {R = R} p) ≡ p
toAny∘fromAny≗id (here px) = P.refl
toAny∘fromAny≗id (there p) = P.cong there (toAny∘fromAny≗id p)
Sublist-[x]-bijection : ∀ {x xs} → (Sublist R [ x ] xs) ⤖ (Any (R x) xs)
Sublist-[x]-bijection = mk⤖ (toAny-injective , < fromAny , toAny∘fromAny≗id >)
module Reflexivity
{a r} {A : Set a} {R : Rel A r}
(R-refl : Reflexive R) where
reflexive : _≡_ ⇒ Sublist R
reflexive P.refl = fromPointwise (Pw.refl R-refl)
refl : Reflexive (Sublist R)
refl = reflexive P.refl
open Reflexivity public
module Transitivity
{a b c r s t} {A : Set a} {B : Set b} {C : Set c}
{R : REL A B r} {S : REL B C s} {T : REL A C t}
(rs⇒t : Trans R S T) where
trans : Trans (Sublist R) (Sublist S) (Sublist T)
trans rs (y ∷ʳ ss) = y ∷ʳ trans rs ss
trans (y ∷ʳ rs) (s ∷ ss) = _ ∷ʳ trans rs ss
trans (r ∷ rs) (s ∷ ss) = rs⇒t r s ∷ trans rs ss
trans [] [] = []
open Transitivity public
module Antisymmetry
{a b r s e} {A : Set a} {B : Set b}
{R : REL A B r} {S : REL B A s} {E : REL A B e}
(rs⇒e : Antisym R S E) where
open ℕₚ.≤-Reasoning
antisym : Antisym (Sublist R) (Sublist S) (Pointwise E)
antisym [] [] = []
antisym (r ∷ rs) (s ∷ ss) = rs⇒e r s ∷ antisym rs ss
antisym (_∷ʳ_ {xs} {ys₁} y rs) (_∷ʳ_ {ys₂} {zs} z ss) =
⊥-elim $ ℕₚ.<-irrefl P.refl $ begin
length (y ∷ ys₁) ≤⟨ length-mono-≤ ss ⟩
length zs ≤⟨ ℕₚ.n≤1+n (length zs) ⟩
length (z ∷ zs) ≤⟨ length-mono-≤ rs ⟩
length ys₁ ∎
antisym (_∷ʳ_ {xs} {ys₁} y rs) (_∷_ {y} {ys₂} {z} {zs} s ss) =
⊥-elim $ ℕₚ.<-irrefl P.refl $ begin
length (z ∷ zs) ≤⟨ length-mono-≤ rs ⟩
length ys₁ ≤⟨ length-mono-≤ ss ⟩
length zs ∎
antisym (_∷_ {x} {xs} {y} {ys₁} r rs) (_∷ʳ_ {ys₂} {zs} z ss) =
⊥-elim $ ℕₚ.<-irrefl P.refl $ begin
length (y ∷ ys₁) ≤⟨ length-mono-≤ ss ⟩
length xs ≤⟨ length-mono-≤ rs ⟩
length ys₁ ∎
open Antisymmetry public
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} (R? : Decidable R) where
sublist? : Decidable (Sublist R)
sublist? [] ys = yes (minimum ys)
sublist? (x ∷ xs) [] = no λ ()
sublist? (x ∷ xs) (y ∷ ys) with R? x y
... | true because [r] =
Dec.map (∷⁻¹ (invert [r])) (sublist? xs ys)
... | false because [¬r] =
Dec.map (∷ʳ⁻¹ (invert [¬r])) (sublist? (x ∷ xs) ys)
module _ {a e r} {A : Set a} {E : Rel A e} {R : Rel A r} where
isPreorder : IsPreorder E R → IsPreorder (Pointwise E) (Sublist R)
isPreorder ER-isPreorder = record
{ isEquivalence = Pw.isEquivalence ER.isEquivalence
; reflexive = fromPointwise ∘ Pw.map ER.reflexive
; trans = trans ER.trans
} where module ER = IsPreorder ER-isPreorder
isPartialOrder : IsPartialOrder E R → IsPartialOrder (Pointwise E) (Sublist R)
isPartialOrder ER-isPartialOrder = record
{ isPreorder = isPreorder ER.isPreorder
; antisym = antisym ER.antisym
} where module ER = IsPartialOrder ER-isPartialOrder
isDecPartialOrder : IsDecPartialOrder E R →
IsDecPartialOrder (Pointwise E) (Sublist R)
isDecPartialOrder ER-isDecPartialOrder = record
{ isPartialOrder = isPartialOrder ER.isPartialOrder
; _≟_ = Pw.decidable ER._≟_
; _≤?_ = sublist? ER._≤?_
} where module ER = IsDecPartialOrder ER-isDecPartialOrder
module _ {a e r} where
preorder : Preorder a e r → Preorder _ _ _
preorder ER-preorder = record
{ isPreorder = isPreorder ER.isPreorder
} where module ER = Preorder ER-preorder
poset : Poset a e r → Poset _ _ _
poset ER-poset = record
{ isPartialOrder = isPartialOrder ER.isPartialOrder
} where module ER = Poset ER-poset
decPoset : DecPoset a e r → DecPoset _ _ _
decPoset ER-poset = record
{ isDecPartialOrder = isDecPartialOrder ER.isDecPartialOrder
} where module ER = DecPoset ER-poset
module Disjointness {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
private
infix 4 _⊆_
_⊆_ = Sublist R
DisjointUnion→Disjoint : ∀ {xs ys zs us} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} {τ : us ⊆ zs} →
DisjointUnion τ₁ τ₂ τ → Disjoint τ₁ τ₂
DisjointUnion→Disjoint [] = []
DisjointUnion→Disjoint (y ∷ₙ u) = y ∷ₙ DisjointUnion→Disjoint u
DisjointUnion→Disjoint (x≈y ∷ₗ u) = x≈y ∷ₗ DisjointUnion→Disjoint u
DisjointUnion→Disjoint (x≈y ∷ᵣ u) = x≈y ∷ᵣ DisjointUnion→Disjoint u
Disjoint→DisjointUnion : ∀ {xs ys zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} →
Disjoint τ₁ τ₂ → ∃₂ λ us (τ : us ⊆ zs) → DisjointUnion τ₁ τ₂ τ
Disjoint→DisjointUnion [] = _ , _ , []
Disjoint→DisjointUnion (y ∷ₙ u) = _ , _ , y ∷ₙ proj₂ (proj₂ (Disjoint→DisjointUnion u))
Disjoint→DisjointUnion (x≈y ∷ₗ u) = _ , _ , x≈y ∷ₗ proj₂ (proj₂ (Disjoint→DisjointUnion u))
Disjoint→DisjointUnion (x≈y ∷ᵣ u) = _ , _ , x≈y ∷ᵣ proj₂ (proj₂ (Disjoint→DisjointUnion u))
⊆-disjoint? : ∀ {xs ys zs} (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs) → Dec (Disjoint τ₁ τ₂)
⊆-disjoint? [] [] = yes []
⊆-disjoint? (x≈z ∷ τ₁) (y≈z ∷ τ₂) = no λ()
⊆-disjoint? (y ∷ʳ τ₁) (x≈y ∷ τ₂) =
Dec.map′ (x≈y ∷ᵣ_) (λ{ (_ ∷ᵣ d) → d }) (⊆-disjoint? τ₁ τ₂)
⊆-disjoint? (x≈y ∷ τ₁) (y ∷ʳ τ₂) =
Dec.map′ (x≈y ∷ₗ_) (λ{ (_ ∷ₗ d) → d }) (⊆-disjoint? τ₁ τ₂)
⊆-disjoint? (y ∷ʳ τ₁) (.y ∷ʳ τ₂) =
Dec.map′ (y ∷ₙ_) (λ{ (_ ∷ₙ d) → d }) (⊆-disjoint? τ₁ τ₂)
Disjoint-irrelevant : ∀{xs ys zs} → Irrelevant (Disjoint {R = R} {xs} {ys} {zs})
Disjoint-irrelevant [] [] = P.refl
Disjoint-irrelevant (y ∷ₙ d₁) (.y ∷ₙ d₂) = P.cong (y ∷ₙ_) (Disjoint-irrelevant d₁ d₂)
Disjoint-irrelevant (x≈y ∷ₗ d₁) (.x≈y ∷ₗ d₂) = P.cong (x≈y ∷ₗ_) (Disjoint-irrelevant d₁ d₂)
Disjoint-irrelevant (x≈y ∷ᵣ d₁) (.x≈y ∷ᵣ d₂) = P.cong (x≈y ∷ᵣ_) (Disjoint-irrelevant d₁ d₂)
Disjoint-irrefl′ : ∀{xs ys} {τ : xs ⊆ ys} → Disjoint τ τ → Null xs
Disjoint-irrefl′ [] = []
Disjoint-irrefl′ (y ∷ₙ d) = Disjoint-irrefl′ d
Disjoint-irrefl : ∀{x xs ys} → Irreflexive {A = x ∷ xs ⊆ ys } _≡_ Disjoint
Disjoint-irrefl P.refl x with Disjoint-irrefl′ x
... | () ∷ _
DisjointUnion-sym : ∀ {xs ys xys} {zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} {τ : xys ⊆ zs} →
DisjointUnion τ₁ τ₂ τ → DisjointUnion τ₂ τ₁ τ
DisjointUnion-sym [] = []
DisjointUnion-sym (y ∷ₙ d) = y ∷ₙ DisjointUnion-sym d
DisjointUnion-sym (x≈y ∷ₗ d) = x≈y ∷ᵣ DisjointUnion-sym d
DisjointUnion-sym (x≈y ∷ᵣ d) = x≈y ∷ₗ DisjointUnion-sym d
Disjoint-sym : ∀ {xs ys} {zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} →
Disjoint τ₁ τ₂ → Disjoint τ₂ τ₁
Disjoint-sym [] = []
Disjoint-sym (y ∷ₙ d) = y ∷ₙ Disjoint-sym d
Disjoint-sym (x≈y ∷ₗ d) = x≈y ∷ᵣ Disjoint-sym d
Disjoint-sym (x≈y ∷ᵣ d) = x≈y ∷ₗ Disjoint-sym d
DisjointUnion-[]ˡ : ∀{xs ys} {ε : [] ⊆ ys} {τ : xs ⊆ ys} → DisjointUnion ε τ τ
DisjointUnion-[]ˡ {ε = []} {τ = []} = []
DisjointUnion-[]ˡ {ε = y ∷ʳ ε} {τ = y ∷ʳ τ} = y ∷ₙ DisjointUnion-[]ˡ
DisjointUnion-[]ˡ {ε = y ∷ʳ ε} {τ = x≈y ∷ τ} = x≈y ∷ᵣ DisjointUnion-[]ˡ
DisjointUnion-[]ʳ : ∀{xs ys} {ε : [] ⊆ ys} {τ : xs ⊆ ys} → DisjointUnion τ ε τ
DisjointUnion-[]ʳ {ε = []} {τ = []} = []
DisjointUnion-[]ʳ {ε = y ∷ʳ ε} {τ = y ∷ʳ τ} = y ∷ₙ DisjointUnion-[]ʳ
DisjointUnion-[]ʳ {ε = y ∷ʳ ε} {τ = x≈y ∷ τ} = x≈y ∷ₗ DisjointUnion-[]ʳ
DisjointUnion-fromAny∘toAny-∷ˡ⁻ : ∀ {x xs ys} (τ : (x ∷ xs) ⊆ ys) → DisjointUnion (fromAny (toAny τ)) (∷ˡ⁻ τ) τ
DisjointUnion-fromAny∘toAny-∷ˡ⁻ (y ∷ʳ τ) = y ∷ₙ DisjointUnion-fromAny∘toAny-∷ˡ⁻ τ
DisjointUnion-fromAny∘toAny-∷ˡ⁻ (xRy ∷ τ) = xRy ∷ₗ DisjointUnion-[]ˡ
record DisjointUnion³
{xs ys zs ts} (τ₁ : xs ⊆ ts) (τ₂ : ys ⊆ ts) (τ₃ : zs ⊆ ts)
{xys xzs yzs} (τ₁₂ : xys ⊆ ts) (τ₁₃ : xzs ⊆ ts) (τ₂₃ : yzs ⊆ ts) : Set (a ⊔ b ⊔ r) where
field
{union³} : List A
sub³ : union³ ⊆ ts
join₁ : DisjointUnion τ₁ τ₂₃ sub³
join₂ : DisjointUnion τ₂ τ₁₃ sub³
join₃ : DisjointUnion τ₃ τ₁₂ sub³
infixr 5 _∷ʳ-DisjointUnion³_ _∷₁-DisjointUnion³_ _∷₂-DisjointUnion³_ _∷₃-DisjointUnion³_
_∷ʳ-DisjointUnion³_ :
∀ {xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts} →
∀ {xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} →
∀ y →
DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃ →
DisjointUnion³ (y ∷ʳ τ₁) (y ∷ʳ τ₂) (y ∷ʳ τ₃) (y ∷ʳ τ₁₂) (y ∷ʳ τ₁₃) (y ∷ʳ τ₂₃)
y ∷ʳ-DisjointUnion³ record{ sub³ = σ ; join₁ = d₁ ; join₂ = d₂ ; join₃ = d₃ } = record
{ sub³ = y ∷ʳ σ
; join₁ = y ∷ₙ d₁
; join₂ = y ∷ₙ d₂
; join₃ = y ∷ₙ d₃
}
_∷₁-DisjointUnion³_ :
∀ {xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts} →
∀ {xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} →
∀ {x y} (xRy : R x y) →
DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃ →
DisjointUnion³ (xRy ∷ τ₁) (y ∷ʳ τ₂) (y ∷ʳ τ₃) (xRy ∷ τ₁₂) (xRy ∷ τ₁₃) (y ∷ʳ τ₂₃)
xRy ∷₁-DisjointUnion³ record{ sub³ = σ ; join₁ = d₁ ; join₂ = d₂ ; join₃ = d₃ } = record
{ sub³ = xRy ∷ σ
; join₁ = xRy ∷ₗ d₁
; join₂ = xRy ∷ᵣ d₂
; join₃ = xRy ∷ᵣ d₃
}
_∷₂-DisjointUnion³_ :
∀ {xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts} →
∀ {xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} →
∀ {x y} (xRy : R x y) →
DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃ →
DisjointUnion³ (y ∷ʳ τ₁) (xRy ∷ τ₂) (y ∷ʳ τ₃) (xRy ∷ τ₁₂) (y ∷ʳ τ₁₃) (xRy ∷ τ₂₃)
xRy ∷₂-DisjointUnion³ record{ sub³ = σ ; join₁ = d₁ ; join₂ = d₂ ; join₃ = d₃ } = record
{ sub³ = xRy ∷ σ
; join₁ = xRy ∷ᵣ d₁
; join₂ = xRy ∷ₗ d₂
; join₃ = xRy ∷ᵣ d₃
}
_∷₃-DisjointUnion³_ :
∀ {xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts} →
∀ {xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} →
∀ {x y} (xRy : R x y) →
DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃ →
DisjointUnion³ (y ∷ʳ τ₁) (y ∷ʳ τ₂) (xRy ∷ τ₃) (y ∷ʳ τ₁₂) (xRy ∷ τ₁₃) (xRy ∷ τ₂₃)
xRy ∷₃-DisjointUnion³ record{ sub³ = σ ; join₁ = d₁ ; join₂ = d₂ ; join₃ = d₃ } = record
{ sub³ = xRy ∷ σ
; join₁ = xRy ∷ᵣ d₁
; join₂ = xRy ∷ᵣ d₂
; join₃ = xRy ∷ₗ d₃
}
disjointUnion³ : ∀{xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts}
{xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} →
DisjointUnion τ₁ τ₂ τ₁₂ →
DisjointUnion τ₁ τ₃ τ₁₃ →
DisjointUnion τ₂ τ₃ τ₂₃ →
DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃
disjointUnion³ [] [] [] = record { sub³ = [] ; join₁ = [] ; join₂ = [] ; join₃ = [] }
disjointUnion³ (y ∷ₙ d₁₂) (.y ∷ₙ d₁₃) (.y ∷ₙ d₂₃) = y ∷ʳ-DisjointUnion³ disjointUnion³ d₁₂ d₁₃ d₂₃
disjointUnion³ (y ∷ₙ d₁₂) (xRy ∷ᵣ d₁₃) (.xRy ∷ᵣ d₂₃) = xRy ∷₃-DisjointUnion³ disjointUnion³ d₁₂ d₁₃ d₂₃
disjointUnion³ (xRy ∷ᵣ d₁₂) (y ∷ₙ d₁₃) (.xRy ∷ₗ d₂₃) = xRy ∷₂-DisjointUnion³ disjointUnion³ d₁₂ d₁₃ d₂₃
disjointUnion³ (xRy ∷ₗ d₁₂) (.xRy ∷ₗ d₁₃) (y ∷ₙ d₂₃) = xRy ∷₁-DisjointUnion³ disjointUnion³ d₁₂ d₁₃ d₂₃
disjointUnion³ (xRy ∷ᵣ d₁₂) (xRy′ ∷ᵣ d₁₃) ()
disjoint⇒disjoint-to-union : ∀{xs ys zs yzs ts}
{τ : xs ⊆ ts} {σ₁ : ys ⊆ ts} {σ₂ : zs ⊆ ts} {σ : yzs ⊆ ts} →
Disjoint τ σ₁ → Disjoint τ σ₂ → DisjointUnion σ₁ σ₂ σ → Disjoint τ σ
disjoint⇒disjoint-to-union d₁ d₂ u = let
_ , _ , u₁ = Disjoint→DisjointUnion d₁
_ , _ , u₂ = Disjoint→DisjointUnion d₂
in DisjointUnion→Disjoint (DisjointUnion³.join₁ (disjointUnion³ u₁ u₂ u))
open Disjointness public
module DisjointnessMonotonicity
{a b c r s t} {A : Set a} {B : Set b} {C : Set c}
{R : REL A B r} {S : REL B C s} {T : REL A C t}
(rs⇒t : Trans R S T) where
weakenDisjointUnion : ∀ {xs ys xys zs ws}
{τ₁ : Sublist R xs zs}
{τ₂ : Sublist R ys zs}
{τ : Sublist R xys zs} (σ : Sublist S zs ws) →
DisjointUnion τ₁ τ₂ τ →
DisjointUnion (trans rs⇒t τ₁ σ) (trans rs⇒t τ₂ σ) (trans rs⇒t τ σ)
weakenDisjointUnion [] [] = []
weakenDisjointUnion (w ∷ʳ σ) d = w ∷ₙ weakenDisjointUnion σ d
weakenDisjointUnion (_ ∷ σ) (y ∷ₙ d) = _ ∷ₙ weakenDisjointUnion σ d
weakenDisjointUnion (zSw ∷ σ) (xRz ∷ₗ d) = rs⇒t xRz zSw ∷ₗ weakenDisjointUnion σ d
weakenDisjointUnion (zSw ∷ σ) (yRz ∷ᵣ d) = rs⇒t yRz zSw ∷ᵣ weakenDisjointUnion σ d
weakenDisjoint : ∀ {xs ys zs ws}
{τ₁ : Sublist R xs zs}
{τ₂ : Sublist R ys zs} (σ : Sublist S zs ws) →
Disjoint τ₁ τ₂ →
Disjoint (trans rs⇒t τ₁ σ) (trans rs⇒t τ₂ σ)
weakenDisjoint [] [] = []
weakenDisjoint (w ∷ʳ σ) d = w ∷ₙ weakenDisjoint σ d
weakenDisjoint (_ ∷ σ) (y ∷ₙ d) = _ ∷ₙ weakenDisjoint σ d
weakenDisjoint (zSw ∷ σ) (xRz ∷ₗ d) = rs⇒t xRz zSw ∷ₗ weakenDisjoint σ d
weakenDisjoint (zSw ∷ σ) (yRz ∷ᵣ d) = rs⇒t yRz zSw ∷ᵣ weakenDisjoint σ d
shrinkDisjoint : ∀ {us vs xs ys zs}
(σ₁ : Sublist R us xs) {τ₁ : Sublist S xs zs}
(σ₂ : Sublist R vs ys) {τ₂ : Sublist S ys zs} →
Disjoint τ₁ τ₂ →
Disjoint (trans rs⇒t σ₁ τ₁) (trans rs⇒t σ₂ τ₂)
shrinkDisjoint σ₁ σ₂ (y ∷ₙ d) = y ∷ₙ shrinkDisjoint σ₁ σ₂ d
shrinkDisjoint (x ∷ʳ σ₁) σ₂ (xSz ∷ₗ d) = _ ∷ₙ shrinkDisjoint σ₁ σ₂ d
shrinkDisjoint (uRx ∷ σ₁) σ₂ (xSz ∷ₗ d) = rs⇒t uRx xSz ∷ₗ shrinkDisjoint σ₁ σ₂ d
shrinkDisjoint σ₁ (y ∷ʳ σ₂) (ySz ∷ᵣ d) = _ ∷ₙ shrinkDisjoint σ₁ σ₂ d
shrinkDisjoint σ₁ (vRy ∷ σ₂) (ySz ∷ᵣ d) = rs⇒t vRy ySz ∷ᵣ shrinkDisjoint σ₁ σ₂ d
shrinkDisjoint [] [] [] = []
open DisjointnessMonotonicity public